Электроснабжение завода механоконструкций


Оглавление

Введение

1. Характеристика предприятия и источников питания

2. Расчет электрических нагрузок

2.1 Расчет силовых нагрузок

2.2 Расчет осветительной нагрузки

2.3 Определение расчетной нагрузки завода

3. Выбор числа и мощности цеховых трансформаторов и мест их установки

3.1 Выбор мощности трансформаторов

3.2 Оптимизация выбора мощности цеховых трансформаторов с учетом КУ

4. Выбор схемы электроснабжения завода и трансформаторов ГПП

4.1 Выбор числа и мощности трансформаторов ГПП

4.2 Выбор схемы электрических соединений ГПП

4.3 Технико-экономическое обоснование выбора напряжения питания

4.4 Выбор местоположения ГПП

5. Выбор и расчет схемы распределительных и питающих сетей завода

5.1. Выбор схемы распределительных сетей

5.2. Расчет распределительных сетей завода

6. Выбор основного оборудования ГПП

6.1. Выбор аппаратуры на напряжение 110 кВ

6.2. Выбор аппаратуры на 10 кВ

7. Электроснабжение цеха

7.1. Расчет силовой нагрузки по цеху

7.2. Расчет электрического освещения цеха

8. Безопасность и экологичность

8.1 Разработка технических мер электробезопасности при электроснабжении завода механоконструкций

8.1. Применение малых напряжений

8.2. Электрическое разделение сетей

8.3. Защита от опасности при переходе напряжения с высшей стороны на низшую

8.4. Контроль и профилактика повреждений изоляции

8.5. Компенсация емкостной составляющей тока замыкания на землю

8.6. Защита от прикосновения к токоведущим частям

8.7. Защитное заземление

8.8. Зануление

8.9. Защитное отключение

9. Защита сетей и установок напряжением до 1000 В.

9.1. Расчет токов многофазных коротких замыканий

9.2. Расчет токов однофазных кз.

9.3. Защита сетей и ЭП

Заключение

Список литературы

Приложения

Аннотация

Расчет электроснабжения завода механоконструкций. Расчетно-пояснительная записка к дипломному проекту.

В дипломном проекте рассмотрен один из вариантов электроснабжения завода механоконструкций. Произведен расчет электрических нагрузок, выбраны трансформаторы ГПП и ЦТП, рассчитаны распределительные сети, сделан выбор основного оборудования ГПП. Рассмотрен вопрос электроснабжения отдельно взятого цеха.

Рассмотрены технические меры электрической безопасности при электроснабжении завода механоконструкций.

Введение

Темой данной работы является проектирование системы электроснабжения завода механоконструкций.

Электроустановки современных промышленных предприятий представляют собой сложные системы, предъявляющие повышенные требования к надежности электроснабжения, что в свою очередь потребовало автоматизации работы отдельных элементов сетей. В этих условиях принципиально важно, чтобы в проектах электроснабжения и электрооборудования цехов принимались решения, отвечающие требованиям электробезопасности, наименьших затрат на их сооружение и удобства эксплуатации и надежности работы. От категории потребителей электроэнергии и особенностей технологического процесса зависит надежность системы электроснабжения, неправильная оценка особенностей технологического процесса может привести как к снижению надежности системы электроснабжения так и к неоправданным затратам на излишнее резервирование. Проект содержит: расчет электрических нагрузок на всех уровнях напряжений, выбор и расчет питающих и распределительных подстанций с выбором мощности трансформаторов и определение их местоположения, а также решения по электрическому освещению, выбору электрооборудования, аппаратов защиты и вопросы электробезопасности. Проектные решения соответствуют требованиям основных нормативных документов ПУЭ и СНиП и учитывают категорию надежности электроприемников и условиям окружающей среды.

1. Характеристика предприятия и источников питания

Предприятие расположено в промышленно развитом районе. Завод механоконструкций получает питание от районной электростанции, предназначенной для комплексного получения тепловой и электрической энергии. На предприятии использованы потребители электроэнергии преимущественно 1 и 2 категории, значит, предприятие можно отнести ко 2 категории по бесперебойности электроснабжения – примем к установке двухтрансформаторные цеховые подстанции.

Завод механоконструкций – предприятие, обеспечивающее выпуск деталей для техники и продукции широкого потребления. По своей структуре завод имеет основные, заготовительные и вспомогательные цехи. К вспомогательным цехам относятся компрессорный цех, очистные сооружения, цех изделий широкого потребления и топливохранилище.

К заготовительным цехам относятся инструментально-механические, механический, литейный, электроаппаратный, плазовошаблонный и ремонтно-механический цехи. К основным цехам относятся агрегатный и сборочный цехи.

Электроснабжение цехов осуществляется от встроенных понижающих подстанций. Схема электроснабжения завода позволяет продолжать питание электроприемников энергией даже в аварийной ситуации. Технологический процесс производства не является беспрерывным и кратковременное отсутствие электроэнергии не приносит большого ущерба.

Первоначальные сведения по цехам (нагрузка, категорийность ЭСПП, характеристика сред) приведены в таблице 1.1

Таблица 1.1

Характеристика цехов.

№ по плану

Наименование цехов

Нагрузка

Категор.

ЭСПП

Х-ка среды

По СНиП

Х-ка среды

По ПУЭ

Сил., кВт

Осв., кВт

1

2

3

4

5

6

7

8

9

10

11

12

14

15

16

18

Инстр. – мех. цех

Сварочные цехи

Механич. Цехи

Литейный цех

Компресс. Отделение

Эл. – аппарат. Цех

Рем. – Мех. цехи

Заготовительные цехи

Агрегатные цехи

Сборочный цех

Очистные сооружения

Цех изд. шир. потреб.

Цех гальванопокрытий

Котельная

Топливохранилище

Заводоуправление

2195

9252

7210

460.8

2215

210

770

4012

3150

9985

750

340

2810

770

80

60

247.48

939.19

476.28

5.14

58.97

80.196

70.254

444.08

499.89

1402.99

7.34

57.48

224.55

18.627

4.26

11.07

II

II

II

I, II

I

I, II

II

II

II

III

I

III

I

I

II

III

Норм.

Норм.

Норм.

Норм.

Норм.

Норм.

Норм.

Норм.

Норм.

Норм.

Хим. – акт.

Норм.

Хим. – акт.

Норм.

Взрывооп.

Норм.

П-11а

В-1а

В-1

В-1а

2. Расчет электрических нагрузок 2.1 Расчет силовых нагрузок

Определение электрических нагрузок предприятия производим методом коэффициента спроса, т. к нет точных данных об электроприемниках. Величина расчетной активной нагрузки цеха определяется произведением коэффициента спроса на величину суммарной установленной мощности электроприемников:

Рр =Кс -Рн, (2.1).

Где Рр – расчетная или потребляемая мощность, кВт;

Кс – коэффициент спроса (для характерных групп электроприемников приводится в [1]);

Рн – установленная мощность цеха, кВт.

Расчетная реактивная мощность цеха определяется:

Qр =Рр -tg (φ), (2.2).

Где Qр – расчетная реактивная мощность, квар;

Tg (φ) – тангенс угла φ, соответствующий коэффициенту мощности соs (φ),

Который задается для характерных групп электроприемников согласно Л1.

Расчет сведен в таблицу (2.1 1).

Таблица 2.1.1

Результаты определения расчетных нагрузок.

Nпо

Плану

Наименование

Цеха

Наименование

Нагрузки

Рном,

КВт.

Кс

Соs (φ) /

Tg (φ)

Рр, кВт.

Qр, кВАр.

1

2

3

4

5

6

7

8

1

Инструм.

Цех

Станки

Термич.

Транспортеры

Вентиляторы

Насосы

1500

234

81

165

217

2197

0.1

0.6

0.1

0.5

0.7

0.5/1.73

0.95/1.33

0.5/1.73

0.8/0.75

0.8/0.75

150

140

8

83

152

533

260

46

14

62

114

496

2

Сбороч.

Цеха

Станки

Термич.

Насосы

Сварка

Транспортеры

100

332

1100

6800

920

9252

0.2

0.9

0.75

0.5

0.3

0.5/1.73

0.95/0.33

0.8/0.75

0.5/1.73

0.5/1.73

20

298

825

3400

276

4819.8

34.6

98.604

618.75

5882

477.48

7111.43

3

Механич.

Цеха

Станки

Термич.

Вентиляторы

Насосы

3265

3390

410

145

7210

0.2

0.9

0.75

0.3

0.5/1.73

0.95/0.33

0.8/0.75

0.5/1.73

653

3051

307.5

43.5

4055

1129.7

1006.83

230.63

75.26

2442.41

4

Литейное

Отделение

460.8

0.35

0.55/1.52

161

244.72

5

Компресс.

Отделение

Станки

Насосы, вент.

10

65

75

0.2

0.75

0.5/1.73

0.8/0.75

2

48.75

50.75

3.46

36.56

40.02

6

Эл. – аппар.

Цех

Станки

Насос., вент.

Проч.

50

110

50

210

0.2

0.75

0.3

0.5/1.73

0.8/0.75

0.5/1.73

10

82.5

15

107.5

17.3

61.88

25.95

105.13

7

Рем. – мех.

Цеха

Станки

Термич.

Насос., Вент.

Сварка

Транспортеры

405

100

20

200

45

770

0.2

0.9

0.75

0.4

0.3

0.5/1.73

0.95/0.39

0.8/0.75

0.7/1.02

0.5/1.73

81

90

15

80

13.5

279.5

140.13

29.7

11.25

81.6

23.36

286.04

8

Заготовит.

Участок

Станки

Термич.

Насос., Вент.

Сварка

Транспор., проч.

2170

690

330

682

140

4012

0.2

0.9

0.75

0.5

0.3

0.5/1.73

0.95/0.33

0.8/0.75

0.5/1.73

0.5/1.73

434

621

247.5

341

42

1685.5

750.82

204.93

185.63

589.93

72.66

1803.97

9

Агрегатные

Цеха

Станки

Термич.

Насос., вент.

Сварка

Трансп., проч.

2155

150

480

195

170

3150

0.2

0.9

0.75

0.4

0.3

0.5/1.73

0.95/0.33

0.8/0.75

0.7/1.02

0.5/1.73

431

135

360

78

51

1055

745.63

44.55

270

79.56

88.23

1227.97

10

Сборочный

Цех

9985

0.7

0.8/0.75

6989.5

5242.13

11

Очистные

Сооружения

Насос., вент.

Трансп., проч.

450

300

750

0.75

0.3

0.8/0.75

0.5/1.73

337.5

90

427.5

253.13

155.7

408.83

12

Ц. изделий

Шир. потр.

340

0.2

0.5/1.73

68

117.64

14

Цех

Гальванопокр.

Станки

Термич.

Насос., вент

Сварка

Трансп., проч.

150

950

1060

100

550

2810

0.2

0.9

0.75

0.5

0.3

0.5/1.73

0.5/1.73

0.95/0.33

0.8/0.75

0.5/1.73

30

855

795

50

165

1895

51.9

282.15

596.25

86.5

285.45

1302.25

15

Котельная

Станки

Насос., вент.

10

760

770

0.2

0.75

0.5/1.73

0.8/0.75

2

570

572

3.46

427.5

430.96

16

Топливохра-

Нилище

Насос., вент.

80

0.75

0.8/0.75

60

45

18

Заводоуправл.

60

0.75

0.8/0.75

45

33.75

Итого на шинах 0.4 кВ.

22804.05

21338.24

Потребители на высоком напряжении (10 кВ)

5

Компресс.

Отделение

Двигатели

2520

0.75

0.9/0.48

1890

623.7

Итого на шинах 10 кВ.

1890

623.7

2.2 Расчет осветительной нагрузки

При определении расчетной нагрузки кроме силовой учитывается осветительная нагрузка цехов и отдельных помещений. На начальных этапах проектирования для определения осветительной нагрузки используют метод удельной мощности. Мощность ламп определяется по следующей формуле:

Р=w-S, (2.3).

Где S-площадь цеха, м2;

W-удельная мощность освещения.

Она зависит от типа светильника, освещенности, коэффициента запаса, коэффициента отражения поверхностей помещения, значения расчетной высоты, площади помещения.

Таблица 2.2.1

Данные для расчета осветительной нагрузки.

№ по

Плану

Наим. Цеха

S, м2

H, м

Тип

Свет-ка

E, лк

W,

Вт/м2

Рн,

КВт

ρ ПОТ

ρ СТ

ρ РАБ

1

2

3

4

5

6

7

8

9

10

11

12

14

15

16

18

Инстр. ц.

Сбор. ц.

Мех. ц.

Лит. ц.

Компр. отд.

Эл. – ап. ц.

Рем. – мех. ц.

Загот. ц.

Агрег. ц.

Сбор. ц.

Оч. Сооруж

Ширпотр.

Ц. гальван.

Котельная

Топл. – хран.

Заводоупр.

6048

21248.6

10584

504

2620.8

1814.4

3548.16

9979.2

11309.8

31741.9

2822.4

2903.04

5080.32

1411.2

322.56

752.76

12.5

12.5

7.5

7.5

7.5

12.5

7.5

12.5

12.5

12.5

7.5

7.5

12.5

7.5

7.5

7.5

РСПО

УПД

УПД

ЛСП 24 2х40

УПД

УПД

ЛСП03ВЕx2x80

УПД

УПД

УПД

Гс-500

ЛСП03ВЕx2x80

УПД

ЛСП03ВЕx2x80

ЛСП03ВЕx2x80

УСП 2×40

300

300

300

200

150

300

300

300

300

300

20

300

300

200

75

300

44.1

45

10.2

22.5

44.2

19.8

44.2

44.2

44.2

2.6

19.8

44.2

13.2

13.2

14.7

247

939.2

476.3

5.14

58.97

80.2

70.25

441.1

499.9

1403

7.34

57.48

224.6

18.63

4.26

11.07

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

70

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

50

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

Расчетная нагрузка освещения определяется по установленной мощности и коэффициенту спроса из выражения:

Рр =к1 -кс -Рн, (2.4).

Где кс – коэффициент спроса, [1] ;

К1 – коэффициент, учитывающий потери мощности в ПРА и принимается 1.12 для ламп ДРЛ и 1.2 для люминесцентных ламп.

Таблица 2.2.2

Результаты определения расчетных осветительных нагрузок.

Nпо

Плану

Наименов. Цеха

К1

Кс

Рн осв,

КВт

Рр осв,

КВт

Qр осв,

КВт

1

2

3

4

5

6

7

8

9

10

11

12

14

15

16

18

Инстр. Ц.

Сбор. ц.

Мех. ц.

Лит. ц.

Компр. отд.

Эл. – ап. ц.

Рем. – мех. ц.

Загот. ц.

Агрег. ц.

Сбор. ц.

Оч. Сооруж

Ширпотр.

Ц. гальван.

Котельная

Топл. – хран.

Заводоупр.

Осв. Терр.

ИТОГО

1.12

1.12

1.12

1.2

1.12

1.12

1.2

1.12

1.12

1.12

1.2

1.12

1.2

1.2

1.2

0.9

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.6

0.9

247

939.2

476.3

5.14

58.97

80.2

70.25

441.1

499.9

1403

7.34

57.48

224.6

18.63

4.26

11.07

222

999.3

506.78

5.86

62.74

85.33

80.1

469.31

531.88

1491.73

6.97

65.53

238.9

21.23

3.1

11.96

1702.5

6505.2

73

1332.36

675.67

2.82

83.65

113.77

38.44

625.73

709.16

1988.92

31.48

318.55

10.19

1.47

5.74

2269.99

8280.93

2.3 Определение расчетной нагрузки завода

Полная расчетная мощность завода определяется по расчетным активным и реактивным нагрузкам цехов на низком и высоком напряжениях с учетом расчетной нагрузки освещения территории завода, потерь мощности в трансформаторах цеховых ТП и ГПП, с учетом компенсации реактивной мощности. В расчете мощности компенсирующих устройств будем считать компенсирующие устройства на 0.4 кВ для потребителей напряжением 0.4 кВ и КУ на высоком напряжении для ЭП на напряжении 10 кВ.

Необходимая мощность КУ определяется из соотношения:

QКУ =РР -tg (φн ) (2.5).

Где tg (φн ) =0.15

Нагрузка на напряжении 0.4 кВ:

Силовая РР =22338.05 кВт;

QР =21338.24 квар;

Осветительная РР =6505.2 кВт;

QР =8280.93 квар.

Суммарная мощность компенсирующих устройств на напряжении 0.4 кВ следующая:

QКУ НН = (РР +РР ОСВ ) -tg (φн ) =28843.25-0.15=4326.49 квар.

Нагрузка на напряжении 10 кВ:

Силовая РР =1890 кВт;

QР =623.7 квар.

Напряжением 10 кВ питаются асинхронные двигатели, следовательно нужно ставить КУ. Суммарная мощность компенсирующих устройств на высоком напряжении следующая:

QКУ ВН =1800-0.33=594 квар.

Так как трансформаторы цеховых подстанций и ГПП не выбраны, то потери в них определяют приближенно из соотношений:

ΔРТ =0.02-SР, (2.6).

ΔQТ =0.1-SР, (2.7).

Для нагрузки на напряжении 0.4 кВ:

Sр =41342.81 кВА.

Численно потери в цеховых трансформаторах будут равны:

ΔРТ =0.02-41342.81=826.86 кВт,

ΔQТ =0.1-41342.81=4134.28 квар.

Нагрузка на напряжении 10 кВ равна:

РР =22338.05+6505.2+1890+826.86=31560.11 кВт.

QР =21338.24+8280.93+623.7+4134.28=34377.15 квар.

SР =46667.22 кВА.

Потери мощности в трансформаторах на ГПП равны:

ΔРТ =631.2 кВт,

ΔQТ =3437.72 квар.

Т. о. расчетная мощность завода будет:

РР =31560.11+631.2=32191.31 кВт,

QР =34377.15+3437.72=37814.87 квар,

SР =49661.3 кВА.

3. Выбор числа и мощности цеховых трансформаторов и мест их установки 3.1 Выбор мощности трансформаторов

Так как на промышленном предприятии в основном преобладают нагрузки первой и второй категорий, то согласно ПУЭ к установке приняты двухтрансформаторные цеховые подстанции.

Расчетную мощность трансформаторов в соответствии с [3] определяю по среднесменной нагрузке цеха с учетом расчетных нагрузок освещения.

Среднесменную нагрузку нахожу по следующим формулам:

РСМ =РН -КИ, (3.1).

QСМ =РСМ -tg (φ), (3.2).

Где КИ – коэффициент использования для характерных групп электроприемников.

Расчет мощности ЦТП представлен в таблице 3.3.1.1

Поскольку нагрузка компрессорного отделения и литейного цеха на напряжении до 1000 В незначительна, то для них имеет смысл установить одну ТП.

Таблица 3.3.1.1

Расчет мощности ЦТП.

№ ПО ПланУ

Рном,

КВт.

КИ

Соs (φ) /

Tg (φ)

Средние нагрузки

Расчетные НГ освещения

SСМ, кВА

РСМ, кВт

QСМ,

Квар

РР ОСВ,

КВт

QР ОСВ,

Квар

1

2

3

4

5

6

7

8

9

1

1500

234

81

165

217

0.15

0.75

0.5

0.6

0.7

0.5/1.73

0.95/1.33

0.5/1.73

0.8/0.75

0.8/0.75

225

175.5

40.5

99

151.9

389.25

233.42

70.07

74.25

113.93

222

73

2197

691.9

880.92

1321.1

2

100

332

1100

6800

920

0.15

0.75

0.7

0.25

0.5

0.5/1.73

0.95/0.33

0.8/0.75

0.5/1.73

0.5/1.73

15

249

770

1700

460

25.95

82.17

577.5

2941

795.8

999.3

1332.4

9252

3194

4422.4

7120.5

3

3265

3390

410

145

0.15

0.75

0.7

0.5

0.5/1.73

0.95/0.33

0.8/0.75

0.5/1.73

489.8

2542.5

287

72.5

847.4

839

215.3

125.4

506.8

675.7

7210

3391.8

2027.1

4743.9

4

460.8

0.6

0.55/1.52

276.5

420.2

5.9

2.8

460.8

276.5

420.2

508.6

5

10

65

0.15

0.7

0.5/1.73

0.8/0.75

1.5

45.5

2.6

34.1

62.7

83.7

75

47

36.7

162.9

6

50

110

50

0.15

0.7

0.3

0.5/1.73

0.8/0.75

0.5/1.73

7.5

77

15

13

57.8

25.95

85.3

113.8

210

99.5

96.75

280.1

7

405

100

20

200

45

0.15

0.75

0.7

0.25

0.5

0.5/1.73

0.95/0.39

0.8/0.75

0.7/1.02

0.5/1.73

60.75

75

14

50

22.5

105.1

29.3

10.5

51

38.9

80.1

38.4

770

222.3

234.8

407.5

8

2170

690

330

682

140

0.15

0.75

0.7

0.25

0.5

0.5/1.73

0.95/0.33

0.8/0.75

0.5/1.73

0.5/1.73

325.5

517.5

231

170.5

70

563.1

170.8

173.3

295

121.1

469.3

625.7

4012

1314.5

1323.3

2642.1

9

2155

150

480

195

170

0.15

0.75

0.7

0.25

0.5

0.5/1.73

0.95/0.33

0.8/0.75

0.7/1.02

0.5/1.73

323.3

112.5

336

48.8

85

559.3

37.13

252

49.8

147.5

531.9

709.2

3150

905.6

1045.7

2268.5

10

9985

0.08

0.8/0.75

798.8

599.1

1491.7

1988.9

9985

798.8

599.1

3456

11

450

300

0.7

0.5

0.8/0.75

0.5/1.73

315

150

236.3

259.5

6.9

750

465

495.8

684.5

12

340

0.1

0.5/1.73

34

58.8

65.5

31.5

34

58.8

134.4

14

150

950

1060

100

550

0.15

0.75

0.7

0.25

0.5

0.5/1.73

0.5/1.73

0.95/0.33

0.8/0.75

0.5/1.73

22.5

712.5

742

25

275

38.9

1232.6

244.9

18.8

475.8

238.9

318.6

2810

1777

2011

3080.7

15

10

760

0.15

0.7

0.5/1.73

0.8/0.75

1.5

532

2.6

399

21.2

10.2

770

533.5

401.6

690.8

16

80

0.7

0.8/0.75

56

42

3.1

1.5

80

56

42

73.4

18

60

0.8/0.75

48

36

12

6

60

48

36

73.2

Теперь, когда известны средние нагрузки цехов, в зависимости от плотности нагрузки, согласно [4], можно произвести выбор мощности трансформаторов и числа ТП в каждом из цехов.

Результаты выбора сведены в таблицу 3.3.1.2.

Таблица 3.3.1.2

Результаты выбора мощности трансформаторов и числа ТП.

NЦЕХАПО

ПланУ

SСМ, кВА

SР, кВА

F, м2

σ

КВА/м2

SТНОМ,

КВА

Кол-во

КТП

Номер

КТП

НА ПланЕ

1

2

3

4

5

6

7

8

1

1321.1

728.08

6048

0.12

2×630

1

1

2

7120.5

8590.9

21248.6

0.75

1600

1600

1600

1600

1000

5

2

3

4

6

5

3

4743.9

4733.7

10584

0.45

1600

1600

1600

3

7

8

9

4

5

6

7

18

508.6

162.9

280.1

407.5

73.2

292.9

64.6

150.4

399.9

56.25

504

2620.8

1814.4

3548.2

752.76

0.1

2×1600

1

10

8

2642.1

2468.9

9979.2

0.25

1000

1000

630

3

13

12

11

9

2268.5

1618.9

11309.8

0.14

630

630

630

630

4

14

15

16

17

10

3456

8736.8

31741.9

0.25

1600

1000

1000

3

18

19

20

11

12

684.5

134.4

591.5

135.9

2822.4

0.25

2×1000

1

21

14

3080.7

2299.2

5080.3

0.45

2×1600

2×1600

2

22

23

15

16

690.8

73.4

716.2

75

1141.2

32256

0.45

1000

1

24

3.2 Оптимизация выбора мощности цеховых трансформаторов с учетом КУ

Поскольку для каждого предприятия энергосистема устанавливает величину реактивной мощности, которую она передает по своим сетям этому предприятию в часы максимума нагрузки энергосистемы и в часы минимума нагрузки энергосистемы, то недостающая реактивная мощность должна быть скомпенсирована на месте. Проблема компенсации реактивной мощности важна еще потому, что это позволяет значительно уменьшить потери электроэнергии. Наибольший эффект снижения потерь электроэнергии в сети имеет место при полной компенсации реактивных нагрузок. Задача сводится к выбору для каждого РП батарей конденсаторов, мощность которых по возможности равна реактивной нагрузке этого пункта.

В зависимости от места установки КУ на стороне 6-10 кВ или на напряжении до 1000 В затраты различны.

Случай установки БК со стороны 6-10 кВ может привести к увеличению установленной мощности трансформаторов, но с другой стороны источники РМ, устанавливаемые там экономичнее БК на напряжении до 1000 В.

Поэтому при определении экономически наивыгоднейшего варианта приходится рассчитывать приведенные затраты. Определим активное сопротивление АД по каталожным данным [7]:

РН =630 кВт; UН =10 кВ; n=1500 об/мин;

ŋ=94.8%; cos (φ) =0.9; SН =0.8%;

МП /МН =1.3; IП /IН =6.5.

RАД = ( (РН +ΔРМЕХ ) -мК ) / (4- (1-SН ) -1002 -6.52 ), (3.3).

Механические потери примем 1% от РН.

RАД =2.45 Ом.

Параметры распределительных сетей приведены в таблице 3.3.2.1 Расчет этих сетей произведен в п.6.2.

Таблица 3.3.2.1

Параметры распределительных сетей.

Наименование

Линии.

Длина

Каб., м.

Принятое

Сечение, мм2 .

R0 , Ом/км.

Х0 , Ом/км.

Магистраль 1:

ГПП-КТП 6

КТП 6-КТП 1

763.8

648.3

115.5

3×35

0.89

0.095

Магистраль 2:

ГПП-КТП 13

КТП 13-КТП 12

КТП 12-КТП 11

272.3

110.1

80.1

82.1

3×50

0.62

0.09

Магистраль 3:

ГПП-КТП 14

КТП 14-КТП 5

564.7

455.9

108.8

3×16

1.94

0.113

Магистраль 4:

ГПП-КТП 17

КТП 17-КТП 16

КТП 16-КТП 15

592.2

485.5

55.3

51.4

3×16

1.94

0.113

Магистраль 5:

ГПП-КТП 18

КТП 18-КТП 19

КТП 19-КТП 20

1027.4

731.8

141.9

153.7

2x (3×95)

0.33

0.083

Магистраль 6:

ГПП-КТП 23

КТП 23-КТП 22

КТП 22-КТП 21

552.8

264.3

93.4

195.1

3×70

0.44

0.086

Магистраль 7:

ГПП-КТП 24

287.5

287.5

3×16

1.94

0.113

Магистраль 8:

ГПП-РП

РП – КТП 10

РП-КТП 9

КТП 9 – КТП 8

КТП 8-КТП 7

РП – АД

1070.8

702.1

6

220.6

69.9

66.2

6

2x (3×95)

0.33

0.083

Чтобы определить оптимальную мощность БК необходимо произвести последовательное эквивалентирование схемы замещения исходной распределительной сети начиная с конца токопровода, в соответствии с формулой:

RЭ =1/Σ (1/Ri ), (3.4).

Т. к. каждый раз последовательно складывается только два сопротивления, то удобнее пользоваться формулой сложения двух параллельно соединенных сопротивлений, вытекающей из (3.4):

RЭ 12 =R1 -R2 / (R1 +R2 ), (3.5).

Когда эквивалентирование всей сети будет завершено, распределение Q по участкам токопровода и ответвлениям рассчитывается по (3.6).

Qi =Q-RЭ /Ri, (3.6).

Где Q-суммарная мощность, подлежащая распределению;

Ri – сопротивление I-й радиальной линии;

RЭ – эквивалентное сопротивление всех радиальных линий.

Расчетная схема замещения приведена на рис.3.2.1

Рис.3.2.1 Схема замещения распределительной сети.

В результате эквивалентирования получено RЭ ГПП =0.025 Ом.

Таблица 3.3.2.2

Результаты расчета КУ.

№ КТП

QЭi, квар

QРi, квар.

QКУi, квар.

Тип КУ, 0.4 кВ

1

2

3

4

5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

732.2

998.5

945.2

901.6

432.5

1008.1

768.1

699.6

738.1

98.5

434.7

559.2

579.9

401.1

389.4

302.1

404.7

700.2

508.1

519.6

371.8

876.4

953.92

1300

1300

1300

554.8

1300

900.93

900.93

900.93

120.4

549

700

700

438.73

438.73

438.73

438.73

1188

700

700

495.8

1164.8

221.72

301.5

354.8

398.4

122.3

291.9

132.83

201.33

162.83

21.9

114.3

140.8

120.1

37.63

49.33

136.63

34.03

487.8

191.9

180.4

124

288.4

2xУКБН-100

2хУКБТ-150

2хУКБТ-150

2хУКБТ-200

УКБН-100

2хУКБТ-150

УКБН-100

УКБТ-200

УКБТ-150

УКБН-100

УКБТ-150

УКБН-100

УКБН-100

3хУКБТ-150

2xУКБН-100

2xУКБН-100

УКБН-100

2хУКБТ-150

23

24

912.1

283.8

1164.8

411.8

252.7

128

УКБН-100+

УКБТ-150

УКБН-100

4. Выбор схемы электроснабжения завода и трансформаторов ГПП 4.1 Выбор числа и мощности трансформаторов ГПП

Поскольку на рассматриваемом предприятии преобладают потребители I и II категорий по бесперебойности электроснабжения, поэтому, в соответствии с ПУЭ, для внешнего электроснабжения предусматриваю две линии.

Питающие линии выполнены воздушными, т. к расстояние от завода до ИП значительно и составляет 25 км. При сооружении ГПП предусматриваются два трансформатора связи с энергосистемой.

Выбор мощности трансформаторов ГПП произвожу по расчетной мощности завода с учетом загрузки их в нормальном и аварийном режимах с учетом допустимой перегрузки в последнем режиме. Мощность трансформаторов должна быть такой, чтобы при выходе из работы одного из них второй воспринимал бы на себя всю НГ подстанции с учетом аварийной перегрузки.

Мощность трансформатора находим по формуле:

SТР =SР /1.4, (4.1).

Где 1.4-предельный коэффициент загрузки трансформатора.

РР =32191.31 кВт.

QР =32191.31-0.33=10623.13 квар.

SР =33898.84 кВА.

SТР =24213.5 кВА.

Принимаю к установке два трансформатора ТДН-110/10 мощностью по 25 МВА [5].

Загрузка трансформаторов в нормальном режиме:

КЗ =SР /2-SН. ТР. ( 4.2).

КЗ =0.678;

В послеаварийном режиме:

КЗ АВ =SР /SН ТР (4.3).

КЗ АВ =1.36.

Принимаем к установке 2xТДН-25, считая возможным в аварийном режиме отключение потребителей третьей категории и частично потребителей второй категории.

4.2 Выбор схемы электрических соединений ГПП

На ГПП трансформируется энергия, получаемая от ИП, с U=110 кВ на U=10 кВ, на котором происходит распределение электроэнергии по подстанциям и питания ЭП на этом напряжении.

В соответствии с [5] на двух трансформаторных подстанциях U=35-220 кВ применяю схему “Два блока с выключателями и неавтоматической перемычкой со стороны линий”, поскольку блочные схемы позволяют наиболее рационально и экономично решить схему ЭСПП. На подстанциях 35-220 кВ блочные схемы применяются для питания как непосредственно от районных сетей, так и от узловых подстанций промышленного предприятия. Схема приведена на рис.4.1

Схема ГПП удовлетворяет следующим условиям:

Обеспечивает надежность электроснабжения потребителей и переток активной мощности по магистральным связям в нормальном и послеаварийном режимах;

Учитывает перспективы развития;

Допускает возможность поэтапного расширения;

Учитывает широкое использование элементов автоматики и ПРА.

Рис.4.1 Схема “Два блока с выключателями и неавтоматической перемычкой со стороны линий”. 4.3 Технико-экономическое обоснование выбора напряжения питания

Выбор рационального напряжения питания имеет большое значение, т. к величина напряжения влияет на параметры ЛЭП и выбираемого оборудования подстанции и сетей, а следовательно на размер капитальных вложений, расход цветного металла, на величину потерь электроэнергии и эксплуатационных расходов.

Для питания крупных и особо крупных промышленных предприятий рекомендуется использовать напряжения 110, 220 кВ. Напряжение 35 кВ в основном рекомендуется использовать на средних предприятиях при отсутствии значительного числа электродвигателей на напряжение больше 1000 В, а также для частичного распределения энергии на крупном предприятии, где основное напряжение питания 110-220 кВ.

Для внутреннего распределения энергии в настоящее время, как правило, используют напряжение 10 кВ.

Выбор напряжения питания основывается на технико-экономическом сравнении вариантов.

Рассмотрим два варианта с выявлением капитальных затрат, ежегодных эксплуатационных расходов, расходов цветного металла, приведенных затрат. [6].

Для определения технико-экономических показателей намечаем схему внешнего электроснабжения данного варианта. Аппаратура и оборудование намечаем ориентировочно, исходя из подсчитанной электрической нагрузки промышленного предприятия. Затем определяется стоимость оборудования и другие расходы.

Намечаем два варианта внешнего электроснабжения – 35 и 110 кВ.

В соответствии с намеченным вариантом при заданном напряжении определяем суммарные затраты и эксплуатационные расходы.

Капитальные затраты установленного оборудования линии:

ОРУ 110 кВ с двумя системами шин на ЖБ конструкциях.

К0 =2-14.95=29.9 т. руб. [3].

Линия принимается двухцепной, воздушной с алюминиевыми проводами и ЖБ опорами. Экономическое сечение определяю по экономической плотности тока:

IР =SР /√3-U-2, (4.4).

IР =85.19 А.

FЭК =IР /jЭК, (4.5).

FЭК =77.45 мм2 .

ТMAX <5000 ч. [2], следовательно j=1.1

Для сталеалюминиевых проводов минимальным сечением по механической прочности является сечение 25 мм2 , но по условию коронирования при напряжении 110 кВ следует принять сечение 70 мм2 .

Принимаем сечение F=95 мм2 , АС-95, r0 =0.314 Ом/км, x=42.9 Ом/км.

Стоимость 1 км двухцепной линии указанного сечения на ЖБ опорах 12.535 т. руб. [3]. Тогда при двух линиях и L=25 км соответственно:

КЛ =2-25-12.535=626.75 т. руб.

В соответствии с нагрузкой завода устанавливается два трансформатора

ТДН-110/10 с мощностью 25 МВА. Паспортные данные трансформатора следующие:

UК =10.5%; ΔРХХ =29 кВт; ΔРКЗ =120 кВт; КТ =58.3 т. руб. [7].

КТ =2-58.3=116.6 т. руб.

К∑ =29.9+626.75+116.6=773.25 т. руб.

Эксплуатационные расходы.

Потери в линиях

ΔРЛ = ( (SР /2) 2 /U2Н ) /R-L, (4.6).

ΔРЛ =1191.44 кВт.

Потери в двух линиях:

2-ΔРЛ =2382.88 кВт.

Потери в трансформаторе:

Приведенные потери активной мощности при КЗ:

ΔР1 КЗ =ΔРКЗ +КЭК -QКЗ, (4.7).

Где КЭК =0.06 кВт/квар.

ΔР1 КЗ =120+0.06-0.105-25000=277.5 кВт.

Приведенные потери активной мощности при ХХ:

ΔР1 ХХ = ΔРХХ +КЭК -QХХ, (4.8).

ΔР1 ХХ =29=0.06-0.0075-25000=40.25 кВт.

Полные потери в трансформаторах:

ΔРТ =2- (40.25+277.5-0.6782 ) =350.89 кВт.

Полные потери в линии и трансформаторах:

ΔРΣ =ΔРЛ +ΔРТ, (4.9), ΔРΣ =2382.88+350.89=2733.77 кВт.

Стоимость потерь:

СП =С0 -ΔРΣ -ТMAX, (4.10).

Где С0 =0.8 (коп/кВт-ч) – стоимость 1 кВт-ч электроэнергии.

СП =0.8-2733.77-5000=10.94 т. руб.

Средняя стоимость амортизационных отчислений.

Амортизационные отчисления по линиям принимаются 6% от стоимости линий, по подстанциям-10%. [7].

СА Л =37.605 т. руб.

СА ПС =14.65 т. руб.

СΣ Л, ПС =52.255 т. руб.

Суммарные годовые эксплуатационные расходы.

СΣ =СП + СΣ Л, ПС =10.94+52.255=63.195 т. руб.

Суммарные затраты:

З=СΣ +0.125-КΣ =63.195+0.125-773.25=159.85 т. руб.,

Где 0.125-нормативный коэффициент эффективности капиталовложений ед/год.

Потери электроэнергии:

ΔW=ΔРΣ -ТГОД, (4.11).

ΔW=2733.77-5000=13668.85 МВт-ч.

Расход цветного металла:

G=2-L-g, (4.12).

Где g=261 кг/км, [7], – вес 1 км провода.

G=2-25-261=13.05 т.

Расчет варианта на 35 кВ ведется аналогично. Расчетные данные сведены в таблицу 4.3.1

Таблица 4.3.1.1

Затраты по вариантам.

Вариант кВ.

К, т. руб.

С, т. руб.

З, т. руб.

G, т.

ΔW,

Т. кВт*ч.

110

773.25

63.195

159.85

13.05

13668.85

35

997.72

77.02

201.735

41.5

15427.67

Так как ΔW110 < ΔW35 , отдаем предпочтение варианту с напряжением 110 кВ.

4.4 Выбор местоположения ГПП

Для определения условного центра нагрузок считается, что нагрузки распределены равномерно по площади цехов и центры нагрузок совпадают с центром тяжести фигур, изображающих цеха. Координаты центра электрических нагрузок вычисляются по формулам:

X0 ГПП = (ΣРРi -Xi) / (ΣРРi ), (4.13).

Y0 ГПП = (ΣРРi -Yi ) / (ΣРРi ), (4.14).

Где Xi, Yi – координаты центров нагрузок отдельных цехов, м.

Таблица 4.3.1.2

Результаты расчета координат центров нагрузок отдельных цехов.

NПО

ПланУ

Наименование

Цехов

РРi,

КВт.

Хi,

М

Yi,

М

1

2

Инструм. Цех

Сборочн. цеха

755

5819.1

197.8

153.6

803.3

693

3

4

5

6

7

8

9

10

11

12

14

15

16

18

Мех. Цеха

Литейный цех

Компрессорное отд.

Эл. – апп. Цех

Рем. – мех. Цех

Загот. Цех

Агрег. Цех

Сбор. Цех

Очистные сооруж.

Цех ширпотреба

Цех гальванопокр.

Котельная

Топливохранилище

Заводоуправление

4561.8

166.9

1718.5

192.8

359.6

2154.8

1586.9

8481.2

434.5

133.5

2133.9

593.2

63.1

56.9

115.2

92.2

80.6

224.6

220.8

144

276.5

399.4

403.2

453.1

437.8

455.1

487.7

15.4

561.8

472.5

393.8

567

425.3

267.8

472.5

756

493.5

525

225.8

47.3

78.8

567

Х0 ГПП =255.5 м, Y0 ГПП =573.1 м.

Из-за невозможности установки ГПП в месте с найденными координатами, устанавливаем ГПП на свободном месте, ближе к ИП (Y0 ГПП =50 м).

5. Выбор и расчет схемы распределительных и питающих сетей завода 5.1. Выбор схемы распределительных сетей

В соответствии с рекомендациями по проектированию электроснабжения промышленного предприятия для распределительных сетей принимаю напряжение 10 кВ. На выбор этого напряжения распределительных сетей также повлияло наличие на предприятии компрессорного отделения, привод компрессоров в котором осуществляется асинхронными двигателями с непосредственным присоединением к сети 10 кВ.

Для внутризаводского электроснабжения применяется смешанная схема питания цеховых подстанций.

5.2. Расчет распределительных сетей завода

Расчет распределительных сетей выполняется с целью определения сечений жил кабелей при известных токах нагрузки в нормальном и аварийном режимах.

Сечение каждой линии принято выбирать в соответствии со следующими условиями:

По номинальному напряжению:

UН КАБ >=UН СЕТИ, (5.1).

По нагреву расчетным током:

IДЛ. ДОП. >IРАБ.1, ( 5.2).

Где IРАБ.1= IРАБ /КП, (5.3).

КП – корректирующий коэффициент,

КП =К1 -К2 , (5.4).

К1 – поправочный коэффициент на температуру окружающей среды [5, т.7.32] ; К2 – поправочный коэффициент на число кабелей проложенных рядом (К2 =1, если кабель один). В случае если кабели взаимно резервируют друг друга, то:

IДЛ. ДОП. >2-IРАБ.1, ( 5.5).

По экономической плотности тока, исходя из расчетного тока и продолжительности использования максимума нагрузок:

SЭК =IР /jЭК, (5.6).

По термической устойчивости кабеля. Производится путем определения наименьшего термически устойчивого сечения:

(5.7).

Где IПО – установившийся ток трехфазного КЗ; C=98-для кабелей с алюминиевыми жилами; tОТК – время срабатывания защиты; ТА – постоянная времени цепи КЗ. При определении сечения магистрали сначала рассчитывается головной участок, затем кабели между трансформаторными подстанциями. По наибольшему сечению принимается сечение магистрали.

Расчеты по определению сечений кабелей сведены в таблицу 5.5.2.1

Принимается марка кабеля ААБл, способ прокладки-в траншее.

Таблица 5.5.2.1

Результаты расчета распределительных сетей завода.

Наименование

Линии.

Нагрузка

Принятое

Сечение,

Мм2 .

IДОП,

А.

SР,

КВА.

IР,

А.

IАВ,

А.

Магистраль 1:

ГПП-КТП 7

КТП 7-КТП 1

КТП 1-КТП 2

2256.2

728.08

364.04

75.21

24.27

12.13

150.42

48.54

24.26

3×35

150

Магистраль 2:

ГПП-КТП 14

КТП 14-КТП 13

КТП 13-КТП 12

2468.9

1490.9

611

82.3

49.7

20.4

164.6

99.4

40.8

3×50

180

Магистраль 3:

ГПП-КТП 15

КТП 15-КТП 6

1386

981

46.2

32.7

92.4

65.4

3×16

95

Магистраль 4:

ГПП-КТП 18

КТП 18-КТП 17

КТП 17-КТП 16

1213.9

803.9

395.3

40.5

26.8

13.2

81

53.6

26.4

3×16

95

Магистраль 5:

ГПП-КТП 19

КТП 19-КТП 20

КТП 20-КТП 21

8736.8

5456.8

2678.4

291.2

181.9

89.3

582.4

363.8

178.6

2х (3×95)

2×310

Магистраль 6:

ГПП-КТП 24

КТП 24-КТП 23

КТП 23-КТП 22

3026.6

1155.4

727.4

100.9

38.5

24.25

201.8

77

48.5

3×70

215

Магистраль 7:

ГПП-КТП 25

791.2

26.4

52.8

3×16

95

Магистраль 8:

ГПП-РП

РП – КТП 11

РП-КТП 10

КТП 10 – КТП 9

КТП 9-КТП 8

РП – АД

7587.75

964.05

4733.7

3163.9

1569.8

472.5

252.9

32.1

157.8

105.5

52.3

15.75

505.8

64.2

315.6

211

104.6

31.5

2x (3×95)

2×265

Выбор кабелей на напряжение 0.4 кВ сведен в таблицу 5.5.2.2

Таблица 5.5.2.2

Результаты выбора кабелей на напряжение 0.4 кВ.

Наименование

Линии.

Нагрузка

Принятое

Сечение,

Мм2 .

IДОП,

А.

SР,

КВА.

IР,

А.

IАВ,

А.

КТП 11-ШРС 1

КТП 11-ШРС 2

КТП 11-ШРС 3

КТП 11-ШРС 4

56.25

146.45

146.45

150.36

82.72

215.4

215.4

221.1

165.44

430.75

430.75

442.2

3×70

2х (3х95)

2х (3х95)

2х (3х95)

190

2х235

2х235

2х235

КТП 11-ШРС 5

КТП 11-ШРС 6

КТП 22-ШРС 7

КТП 25-ШРС 8

199.95

199.95

135.88

75

294

294

199.8

110.3

588.08

588.08

399.6

220.6

2х (3х150)

2х (3х150)

2х (3х95)

3х95

2х310

2х310

2х235

235

Для расчета кабелей на термическую стойкость необходимо знать I (3) КЗ на шинах 10 кВ ГПП, а также I (3) КЗ на высоком напряжении ГПП. Расчет ведется в о. е. Расчетная схема приведена на рис.5.2.1

Принимаем Sб =100 МВА, U*C =1, Х*С =0.

ХВЛ =0.538-25*100/1152 =0.102.

ХТР =0.105-100/25=0.42.

Для трансформаторов относительное сопротивление Х* соответствует UКЗ в о. е., т. е.:

U*К =0.01-UК %, (5.8).

U*К =0.105.

Для т. К-1:

Iб =Sб /√3-Uб, (5.9).

Iб =100/1.73*10.5=5.51 кА.

IК, С = Iб /ХΣ , (5.10).

ХΣ = ХВЛ + ХТР, (5.11).

ХЛ РП =0.0292-100/102 =0.029.

ХЛ Д =0.0015.

Если к месту КЗ подключен АД, то нужно учитывать их влияние. Действующее значение периодической составляющей тока трехфазного КЗ можно определить по формуле:

IК ДВ =0.9-IН ДВ /Х*Д, ( 5.12).

Где 0.9-расчетная относительная ЭДС АД,

Х* Д – относительное сверхпереходное индуктивное сопротивление АД,

IН ДВ – номинальный ток одновременно работающих двигателей.

IН ДВ =N-РН ДВ /√3-UН ДВ -cos (φ) – (ŋ/100%), (5.13).

Где N-количество одновременно работающих двигателей.

В среднем можно принять Х* Д =0.2, тогда:

IК ДВ =0.9- IН ДВ /0.2=4.5- IН ДВ, (5.14).

Апериодическая составляющая IКЗ от АД не учитывается вследствие ее быстрого затухания.

Суммарное значение ударного тока КЗ с учетом АД определяется по формуле:

IУД =√2- (КУД -IК +4.5- IН ДВ ), (5.15).

IК ДВ =0.801 кА.

I (3) К-1 = (Iб / (ХВЛ + ХТР )) + (IК ДВ / ( (ХЛ ДВ /4) +ХЛ РП ), (5.16).

I (3) К-1 =23.176 кА.

SMIN = (1/98) -23176-√0.75=204.1 мм2 .

Т. к. влияние тока КЗ от АД учитывается только на том напряжении, на котором установлены АД, то для точки К-2 IК ДВ не учитывается.

Iб =0.502 кА.

I (3) К-2 =4.922 кА.

6. Выбор основного оборудования ГПП

В настоящее время широко применяются комплектные трансформаторные подстанции. Их применение позволяет:

Получить большой экономический эффект;

Повысить надежность работы энергоустановок;

Сократить сроки монтажа;

Повысить индустриализацию строительства подстанции;

Сократить территорию, занимаемую подстанцией;

Уменьшить общую стоимость сооружения подстанции.

В проекте ГПП выполняется в виде КТП блочного типа КТПБ (М) – 110/10.

Применение комплектного распределительного устройства наружной установки и шкафов для размещения аппаратуры защиты автоматики и сигнализации исключает необходимость строительства зданий, что резко сокращает объем строительных работ. КТП – 110 рассчитано на работу в условиях от – 400 С до +400 С.

6.1. Выбор аппаратуры на напряжение 110 кВ

Выбор короткозамыкателей.

Условия выбора, расчетные и номинальные данные выбранного короткозамыкателя приведены в таблице 6.1.1

Таблица 6.1.1

Выбор короткозамыкателей.

Условия выбора

Номинальные данные

Расчетные данные

UН >UС

IДИН > iУД

IТ2 tТ ³ I¥ tg

110 кВ

34 кА

12,52 *3 кА2 с

110 кВ

6,93 кА

4,92 *0,75 кА2 с

КЗ – 110 М с приводом ШПКМ.

Для защиты от атмосферных перенапряжений изоляции электрооборудования устанавливают вентильные разрядники РВМГ – 110 М (UНОБ = 195 кВ).

Выбор разъединителей.

Выбор сведен в таблицу 6.1.2

Таблица 6.1.2

Выбор разъединителей.

Условия выбора

Номинальные данные

Расчетные данные

UН >UН СЕТИ

IН >IР МАХ

IДИН ³iУД

IТ2 tТ ³ Вк

110 кВ

3200 А

128 кА

502 *3 кА2 с

110 кВ

3073 А

6,93 кА

4,8 кА2 с

Где t – длительность замыкания (t ³ 0,2 с).

Та =

Выбран РНДЗ – 1-110/3200 У1 с приводом ПДН-1, ПРН – 220.

6.2. Выбор аппаратуры на 10 кВ

На стороне 10 кВ трансформаторов ГПП устанавливаются камеры КРУ серии К-33 [7. т.8-11].

1. Для защиты изоляции электрооборудования от перенапряжения устанавливают ограничители перенапряжений в фарфоровых покрышках на основе оксидно-цинковых варисторов без искровых промежутков типа ОПН-10.

2. Выбор выключателей.

Выбор сведен в таблицу 6.2.1

Таблица 6.2.1

Выбор выключателей.

Тип выключателей

UНОМ,

КВ

IНОМ,

А

IН ОТКЛ,

КА

IПР СКВ,

КА

IПР СКВ,

КА

IТЕР УСТ,

КА

ВМПЭ-10-3200/20-52

10

3200

20

52

20

Проверка выключателей:

1) UН СЕТИ £ UНОМ

10 кВ= 10 кВ

2) по номинальному току:

IНОМ ³ IРАБ МАХ

3200 > 3072

3) по отключающей способности:

А) IП t £ IОТКЛ НОМ

IП t – действующее значение периодической составляющей тока кз;

IП t = I” = 17620 А

IОТКЛ НОМ = 20 кА

17,62 < 20.

Б)

Iаt – апериодическая составляющая тока кз;

BН – номинальное значение относительного содержания апериодической составляющей в отключаемом токе bН = 0,1;

T – номинальное время от начала кз до момента расхождения контактов.

T = tКЗ min + tСВ

TКЗ min – минимальное время РЗ (0,01 с);

TСВ – собственное время отключения выключателя (0,08 с)

,

Где Та =

<

4) на электродинамическую устойчивость:

А) I // £ IПР СКВ, 17,62 < 52;

Б) iУД < iПРСКВ

IУД <

КУД =

IУД =

29,35< 52

Выключатели и разъединители можно не проверять на термическую устойчивость, так как РЗ обеспечивает быстрое отключение кз.

3. Выбор секционного выключателя.

Таблица 6.2.2

Данные секционного выключателя.

Тип выключателей

UНОМ,

КВ

IНОМ,

А

IН ОТКЛ,

КА

IПР СКВ,

КА

IПР СКВ,

КА

IТЕР УСТ,

КА

BB/TEL-10-31,5/2000 У2

10

2000

31,5

80

31,5

Проверка выключателя:

1) UН АП > UНОМ СЕТИ

10 кВ > 10 кВ

2) по номинальному току:

IНОМ ³ IРАБ МАХ

IРАБ МАХ =

SРЭ – мощность получаемая от энергосистемы, IРАБ МАХ = 1500 А;

1500 А < 2000 А;

3) по отключающей способности:

А) IП t £ IОТКЛ НОМ

17,62 < 31,5.

Б)

4) на электродинамическую устойчивость:

А) I // £ IПР СКВ

17,62 < 80;

Б) iУД < iПРСКВ

29,35< 80.

Выбор выключателей отходящих линий.

Выбор произведем аналогично описанному ранее. Результаты сведем в таблицу 6.2.3

Таблица 6.2.3

Выбор выключателей.

Наимен. отходящ. линий

IРАБ МАХ,

А

Тип выключателя

IНОМ В,

А

IНОМ ОТК,

КА

IСКВ,

КА

Магистраль 1

150.42

ВБЛ-10

630

20

52

Магистраль 2

164.6

ВБЛ-10

630

20

52

Магистраль 3

92.4

ВБЛ-10

630

20

52

Магистраль 4

81

ВБЛ-10

630

20

52

Магистраль 5

582.4

ВБЛ-10

630

20

52

Магистраль 6

201.8

ВБЛ-10

630

20

52

Магистраль 7

52.8

ВБЛ-10

630

20

52

Магистраль 8

505.8

ВБЛ-10

630

20

52

Выбор трансформаторов тока.

На вводе и отходящих линиях РУ 10 кВ согласно ПУЭ необходима установка контрольно-измерительных приборов. Для питания токовых цепей этих приборов и схем РЗ устанавливают трансформаторы тока, которые изготавливаются на номинальный вторичный ток 5 А. Трансформаторы тока должны обеспечивать требуемую точность измерения.

Таблица 6.2.4

Данные трансформатора тока.

Тип ТТ

Uном, кВ

I1НОМ, А

I 2НОМ, А

Класс точности

IДИН, к А

ТПШЛ-10

10

4000

5

0,5

155

70/1

Проверка трансформаторов тока:

По номинальному току:

I1НОМ ³ IРАБ МАХ

4000 > 3073

По номинальному напряжению:

UН АП ³ UН СЕТИ

10 кВ = 10 кВ

По вторичной нагрузке:

Z2РАСЧ £ Z2НОМ

Z2РАСЧ = ZПРОВОДОВ +ZКОМТ +ZПРИБОРОВ.

К трансформатору тока подключены следующие приборы:

Таблица 6.2.5

Типы установленных приборов.

Наименование приборов

Тип

Потр. мощн., ВА

Кол-во

1. Амперметр электро-магнитный

Э – 309

5

1

2. Счетчик ферромагнитный

Д – 335

1,5

1

3. Счетчик активной мощности для 3-х поводной сети

И – 675

1,5

1

4. счетчик реактивной мощности

И – 678

1,2

1

SПРИБОРОВ = 5+1,5+1,5+1,2 = 9,2 кВА-10-3

ZПРИБОРОВ =

ZКОНТ = 0,1 Ом

ZПРОВОД = 0,25 Ом

Z2РАСЧ = 0,1+0,25+0,368 = 0,768 Ом

ZНОМ = 1,2 Ом

0,768 < 1,2;

На термическую стойкость:

IТ2 tТ > I¥ tg

702 -1> 17,622 -0,75

6. Выбор трансформаторов напряжения.

Таблица 6.2.6

Выбор трансформаторов напряжения.

Тип ТТ

UН, кВ

U1НОМ, к В

U2ОСН, В

U2ДОП, В

Класс точности

НТМИ-10-66

10

10

100

100/3

0,5

75/640

Проверка трансформатора напряжения:

По напряжению:

UНТН =UНСЕТИ

10 кВ = 10 кВ

По вторичной нагрузке:

S2НОМ £ S2НОМ

S2НОМ – номинальная вторичная мощность.

Таблица 6.2.7

Типы установленных приборов.

Наименование приборов

Тип

Потр. мощн., ВА

Кол-во

1. Вольтметр электромагнитный

Э – 377

2,6

3

2. Ваттметр ферромагнитный

Д – 335

1,5

1

3. Счетчик активной мощности

И – 675

1,5

1

4. Счетчик реактивной мощности

И – 678

1,2

1

5. Реле напряжения

РЭВ-84

15

1

S2РАСЧ = 27 ВА

S2НОМ = 75 ВА.

Трансформатор напряжения защищается предохранителем типа ПКТ – 10.

7. Выбор шин ГПП.

Сборные шины ГПП необходимы для приема и распределения электроэнергии при постоянном напряжении и для различных элементов электрической сети.

Шины проверяем:

По нагреву в нормальном режиме, то есть определим нагрузку в нормальном режиме:

IДЛ. ДОП > IР МАХ, IР МАХ = 3073 А.

Выбираем шины алюминиевых прямоугольного сечения (трех полосные)

S = 100 х 10

IДОП = 3650 [5].

IДЛ. ДОП – длительно допустимый ток для одной полосы.

IДЛ. ДОП = К1 К2 К3 IДОП,

К1 – поправочный коэффициент для расположения шин горизонтально (0,95); К2 – коэффициент длительно допустимого тока для многополюсных шин (1); К3 – поправочный коэффициент при температуре воздуха, отличной от 250 С (1).

IДЛ. ДОП = 0,95*3650 = 3467,5 А, 3467,5 А > 3073 А;

По термической устойчивости токам кз:

С – температурный коэффициент, учитывающий ограничения допустимой температуры нагрева жил кабеля.

100 х 10 > 167,85 мм2 ;

На динамическую устойчивость при трехфазном кз:

SРАСЧ – максимальное расчетное напряжение в жилах с учетом механического резонанса [кГс/см2 ] ;

К – коэффициент механического резонанса для шин аллюминиевых прямоугольного сечения;

F (3) – наибольшая (статическая) сила, действующая на среднюю фазу (находящуюся в наиболее тяжелых условиях) трех параллельных проводников, расположенных в одной плоскости, от взаимодействия между фазами или трехфазного кз [кГс/cм] ;

W – момент сопротивления шины относительно оси, перпендикулярной к направлению силы f [см2 ].

М = ,

М – момент, изгибающий шину (кГс/см);

L – расстояние между опорными изоляторами вдоль оси шин (пролет) (100 см);

А – расстояние между осями смежных фаз (20 см).

F (3) =1.76* (i2УД /а) *10-2, f (3) =0.758 (кГс/cм).

SРАСЧ =592.188 кГс/см2 .

Выбранные шины удовлетворяют условиям проверки.

7. Электроснабжение цеха

Основными потребителями электроэнергии являются электрические приемники напряжением до 1000 В.

Таблица 8.1.

Оборудование цехов.

№ поплану чертежа цеха

Наименование оборудования

Рном, кВт

Кол-во оборудован.

Ки

Cosj

1

Продольно фрезерный станок

61,5

4

0,16

0,5

2

Продольно фрезерный станок

64,9

1

0,16

0,5

3

Сверлильно-фрезерный станок

16,5

1

0,16

0,5

4

Специализированный верт. – фрез. стан.

27,5

2

0,16

0,5

5

Специализированный верт. – фрез. стан.

24,6

2

0,16

0,5

6

Специализированный верт. – фрез. стан.

42,2

2

0,16

0,5

7

Двухшпинд. верт. – фрез. станок

13

2

0,16

0,5

8

Вертикально-фрезерный станок

14,8

3

0,16

0,5

9

Вертикально-фрезерный станок

9

2

0,16

0,5

10

Специализированный верт. – фрез. стан

27,6

21

0,16

0,5

11

Радиально-сверлильн. станок

7,5

1

0,16

0,5

13

Вертикально-фрезерный станок

10

6

0,16

0,5

14

Агрегаты электронасосной

7,5

1

0,7

0,8

15

Централиз. вакуумн. станц.

22,5

1

0,85

1,0

21

Спец. парашлиф. станок

11,9

2

0,16

0,5

22

Фрез. – шлифов. станок

41,6

2

0,16

0,5

19

Универсальн. заточный станок

1,85

7

0,16

0,5

В22

Вытяжной вентилятор

5,5

1

0,6

0,8

В23

Вытяжной вентилятор

1,5

1

0,6

0,8

В24

Вытяжной вентилятор

0,4

1

0,6

0,8

В25¸27

Вытяжной вентилятор

0,6

3

0,6

0,8

В29¸32

Вытяжной вентилятор

7,5

4

0,6

0,8

В34, В36

Вытяжной вентилятор

0,4

2

0,6

0,8

В35

Вытяжной вентилятор

1,5

1

0,6

0,8

В37, В38

Вытяжной вентилятор

1,5

2

0,6

0,8

В39¸44

Вытяжной вентилятор

3

6

0,6

0,8

ТI

Кран мостовой Q= 10 т

28,2

1

0,16

0,5

ТII

Кран мостовой Q=2,5+2,5 т

40,9

1

0,16

0,5

П7¸12

Преточный вентилятор

13

6

0,6

0,8

П13

Преточный вентилятор

0,6

2

0,6

0,8

П14

Преточный вентилятор

2,2

2

0,6

0,8

П15

Преточный вентилятор

3

1

0,6

0,8

АВ28

Аварийный вентилятор

0,6

1

0,6

0,8

АВ33

Аварийный вентилятор

10

1

0,6

0,8

З

Установка ультрафиолетовая

2

2

0,8

1,0

БОВ

Блок осушки воздуха

0,5

1

0,85

1,0

7.1 Расчет силовой нагрузки по цеху

Правильное определение ожидаемых нагрузок при проектировании является основной для решения вопросов, связанных с электроснабжением цеха.

Нагрузки по цеху определяются методом коэффициента максимума.

Рр = Км-Рсм = Км-Ки-Рн (8.1).

Qр = Км`-Qсм = К’Ки-Рн-tgjСМ. (8.2).

Рсм – средняя мощность рабочих ЭП за наиболее загруженную смену;

Рн – суммарная активная мощность рабочих ЭП;

Ки – групповой коэффициент использования активной мощности за наиболее загруженную смену;

Км – коэффициент максимума активной мощности;

К/ м – коэффициент максимума реактивной мощности;

TgjСМ – средневзвешенный tgj по мощностям отдельных ЭП.

(8.3).

Порядок расчета:

Все ЭП по расчетному узлу разбиваются на группы по режимам работы;

По расчетному узлу суммируется количества силовых ЭП и их номинальные мощности;

Суммируются средние активные и реактивные нагрузки рабочих ЭП;

Определяют групповой коэффициент использования расчетного узла, его средневзвешенный коэффициент мощности;

Определяют коэффициент максимума и максимальную силовую нагрузку узла для групп ЭП с переменным графиком нагрузок;

Определяют суммарную мощность и среднюю нагрузку с практически постоянным графиком нагрузки, а также по третьей группе ЭП;

Рассчитывают силовую нагрузку по узлу в целом путем суммирования максимальных нагрузок ЭП всех групп электроприемников.

Расчет нагрузки будет производиться в соответствии с выбором схем цеховых сетей.

Распределение электроэнергии в цехах осуществляется электрическими сетями, представляющими совокупность шинопроводов, кабелей, защитных устройств и пусковых аппаратов.

Для питания ЭП от распределительных пунктов или шинопроводов применяется радиальная схема распределения электроэнергии, также применены схемы питания, называемые ” цепочками”, объединяющие в данном случае по 2ЭП. Достоинством такой схемы является высокая надежность электроснабжения и удобство в эксплуатации. При повреждении проводов или кз прекращают работу 1 или несколько ЭП, подключенных к поврежденной линии, в то время, как остальные продолжают нормальную работу.

Нагрузка, равномерно распределенная по цеху, получает питание от распределительных шинопроводов (ШП II, ШП III). Применение шинопроводов по сравнению с кабельными сетями имеет преимущество в отношении надежности, простоты и удобства подключения. ЭП сосредоточенные группами и распределенные резко неравномерно (находящиеся на разных высотных отметках) запитаны от распределительных пунктов.

Шинопроводы и распределительные пункты в свою очередь получают питание от магистрального шинопровода (за исключением 1,2,3 распределительных пунктов, которые получают питание от распределительного шинопровода), к которому присоединяются с помощью коммутационных защитных аппаратов.

Магистральный шинопровод получает питание от цеховых трансформаторов.

Выбор распределительных пунктов, присоединенная нагрузка, расчет Iр сведены в таблицы 8.1.1 и 8.1.2

Таблица 8.1.1

Распределительные пункты.

№ шкафа (РП)

Присоед. НГ

(№ по плану)

Рном,

КВт

Тип распред.

Пункта

Количество

ЭП

Количество

Присоед-ий

1

В39¸В44

3

ШРС1-23

6

8

2

19

1,85

ШРС1-20У3

7

5

3

П7, П8

13

ШРС1-23

6

8

П15

3

В22

5,5

В23

1,5

В24

0,4

5

П9¸П11

13

ШРС1-23

7

8

В34, В36

0,4

В35

1,5

П14

2,2

6

В37; В38

1,5

ШРС1-20У3

4

5

Уст-ка уф

2

7

П12

13

ПР9332-340

10

12

П14

2,2

БОВ

0,5

В25¸В27

0,6

В29¸В32

7,2

8

П13

0,6

ПР9272-210

4

6

АВ28

0,6

АВ33

10

9

10

27,5

ШРС1-23

6

8

Таблица 8.1.2

Расчетные нагрузки.

РП

НГ наим.

Кол-во

Рмах/

Рмин

aР,

КВт

Ки

Cosj/

Tgj

Рсм,

КВт

Qсм,

Квар

Км

К’м

Рр,

КВт

Qр,

Квар

Iр,

А

7

Вентил.

9

13/22

47

0,6

0,8/0,75

28,2

21,2

БОВ

1

1

0,5

0,85

1/0

0,43

ИТОГО

10

26

47,5

0,6

0,8/0,75

28,6

21,15

1,33

1,1

38,1

23,3

66

8

Вентил.

4

10/0,6

11,8

0,6

0,8/0,75

7,08

5,31

1,5

1,1

10,62

5,84

17,8

9

13,10

6

27,5/10

130

0,16

0,5/1,7

20,8

35,4

1,34

1,1

27,9

38,9

73,36

1

Вентил.

6

1

18

0,6

0,8/0,75

10,8

8,1

1,37

1,1

14,8

8,91

25,4

2

19

7

1

12,95

0,16

0,5/1,7

2,62

4,45

2,3

1,1

6,02

4,895

11,39

3

Вентил.

6

13/0,4

36,4

0,6

0,8/0,75

21,8

16,4

1,37

1,1

29,9

18,02

51,36

5

Вентил.

7

13/0,4

43,5

0,6

0,8/0,75

26,1

19,6

1,33

1,1

34,7

21,5

52

6

Вентил.

2

1

3

0,6

0,8/0,75

1,8

1,4

Уст. ультроф.

2

1

4

0,8

1/0

3,2

ИТОГО

4

2/1,5

7

0,6

0,8/0,75

5

1,4

1,51

1,1

7,55

1,54

11,33

Выбор шинопроводов, присоединенная нагрузка, определение расчетной нагрузки сведены в таблицы 8.1.3., 8.1.4

Таблица 8.1.3

Выбор шинопроводов.

№ШП

Присоед. НГ (№ по плану)

Кол-во ЭП

Рмах/

Рмин

aРн,

КВт

Ки

Cosj/

Tgj

Рсм,

КВт

Qсм,

Квар

ШП II

7,8,14,3,104,5,6,15

27

42,2/

7,5

677,1

0,16

0,5/

1,7

108,34

184,18

1 ШРС

18

10,8

8,1

2 ШРС

16,35

2,616

4,45

ШП III

1,8,9,2,10

11,21,22

13, ТI, ТII

21

64,9/9

622,5

0,16

0,5/

1,7

99,6

169,32

3 ШРС

30

21,84

16,38

Таблица 8.1.4

Определение расчетной нагрузки.

№ ШП

Руст, кВт

Iр, А

Тип ШП

Iном, А

Iуд, кА

ШП – II

711,45

320

ШРА-73

450

25

ШП – III

652,5

340

ШРА-73

450

25

ШМА-1

895,45

467,69

ШМА-73

1600

70

ШМА-2

707,8

409,8

ШМА-73

1600

70

Шинопроводы выбираю по нагреву длительно допустимым максимальным током нагрузки:

IДОП ³ IРАБ МАХ

Кабели, по которым получают питание ЭП (от распределительных пунктов и шинопроводов до ЭП). Выбираю по расчетному и аварийному токам. В производственной части цеха (отметка 0.000) применяется скрытая прокладка кабелей. При этом используются трубы, прокладываемые под полом.

Таблица 8.1.5. Используемые кабели.

Наимен.

Iр, А

Iав, А

F, мм2

Iдоп, А

Сеч. трубы

Марка провода

ШПI – ШПII

320

640

2 (3х95+1х35)

510

АВВГ

ШПIV-ШПIII

340

680

2 (3х95+1х35)

510

АВВГ

ШПIV 5ШРС

52

104

3х95+1х35

255

АВВГ

ШПI – 6ШРС

14

28

3 (1х95) +1х35

255

ТГ70

АПВ

ШПI – 7ПР

66

132

3х95+1х35

255

АВВГ

ШП IV-8ПР

18

36

3х95+1х35

255

АВВГ

ШПI – 9ШРС

70

140

3 (1х95) +1х35

255

ТГ70

АПВ

ШП II – 7

26

52

3х6+1х4

46

Т32

АВВГ

ШП II – 8

29,6

59,2

3х6+1х4

46

Т32

АВВГ

ШП II – 14

15

30

3х4+1х2,5

38

Т25

АВВГ

ШП II – 3

33

66

3х16+1х10

90

ТГ40

АВВГ

ШП II – 10

55

110

3х16+1х10

90

ТГ40

АВВГ

ШП II – 4

55

110

3х16+1х10

90

ТГ40

АВВГ

ШП II – 5

49,2

98,4

3х16+1х10

90

ТГ40

АВВГ

ШП II – 6

84,4

169,6

3х35+1х16

140

ТГ50

АВВГ

ШП II – 15

45

90

3х16+1х10

90

ТГ40

АВВГ

ШП II-1ШРС

25

50

3х16+1х10

90

АВВГ

ШП II-2ШРС

11

22

3х16+1х10

90

АВВГ

ШП II-3ШРС

51

102

3х16+1х10

90

АВВГ

ШП III – 1

115

230

3х70+1х25

210

АВВГ

ШП III – 8

29,6

59,2

3х6+1х4

90

ТГ32

АВВГ

ШП III – 9

18

36

3х4+1х2,5

38

ТГ25

АВВГ

ШП III – 2

129,8

258,6

3х70+1х25

210

АВВГ

ШП III – 10

55

110

3х16+1х10

90

ТГ40

АВВГ

ШП III – 11

15

30

3х4+1х2,5

38

ТГ25

АВВГ

ШП III – 21

23,8

47,6

3х4+1х2,5

38

ТГ25

АВВГ

ШП III – 22

41,6

83,2

3х35+1х16

140

ТГ50

АВВГ

ШП III – 13

20

40

3х4+1х2,5

38

ТГ25

АВВГ

ШПIII-ТII+ТI

56+82

138,4

3х70+1х25

210

АВВГ

1ШРСВ39¸44

6,6

13,2

3х4+1х2,5

38

ТГ25

АВВГ

2ШРС – 19

3,7

7,4

3 (1х2,5)

29

ТГ20

АПВ

2ШРС-П7, П8

25,2

50,4

3х16+1х10

90

АВВГ

3ШРС-П15,В22¸24

11

22

3х4+1х2,5

38

АВВГ

5ШРС П9¸11

25,2

50,4

3х16+1х10

90

АВВГ

5ШРС-П14,В34¸35

4,9

9,8

3х4+1х2,5

38

АВВГ

6ШРС-В37¸38,3

3,2

6,4

3х4+1х2,5

38

АВВГ

? ПР-П12, П14

254,2

50,4

3х6+1х4

46

АВВГ

7ПР-В25¸27

16,7

33,4

3х4+1х2,5

38

АВВГ

7ПР-В29¸32,БОВ

16,7

33,4

3х4+1х2,5

38

АВВГ

8ПР-П13, АВ22, АВ39

23,5

46

3х4+1х2,5

38

АВВГ

9ШРС – 10

55

110

3х16+1х10

90

АВВГ

9ШРС-13

20

40

3х4+1х2,5

38

АВВГ

Для питания мостовых насосов выбираем троллейные линии. Троллеи выбираются по тепловому току [7].

Таблица 8.1.6

Выбор троллеев.

Рн, кВт

Iн, А

In, А

Размеры троллей

Iдоп, А

Т I

28,2

56,4

395

60х60х6

416

Т II

40,9

82

574

75х75х8

575

7.2 Расчет электрического освещения цеха

Устройство эвакуационного освещения обязательно во всех случаях независимо от наличия аварийного освещения.

Аварийное освещение для продолжения работы необходимо в помещениях и на открытых пространствах, если прекращение нормальной работы из-за отсутствия рабочего освещения может вызвать: взрыв, пожар, отравление людей, нарушение технологического процесса, опасность травматизма и так далее. Это освещение должно создавать на поверхностях, требующих обслуживание, освещенность 5% нормированной для общего освещения, причем при отсутствии особого обоснования – в пределах от 2 до 30 м в зданиях и от 1 до 5 м вне их. Для аварийного освещения можно применять только лампы накаливания или люминесцентные лампы; допускается присоединение к группам аварийного освещения лампы ДРЛ и ДРИ для увеличения освещенности сверх нормированной для аварийного режима.

Светильники аварийного освещения преимущественно выделяются из числа светильников рабочего освещения; в помещениях, работающих в 1-2 смены, при мощности ламп рабочего освещения 200 Вт и более предпочтительна установка дополнительных светильников.

Гс-1000 М используются для аварийного освещения.

Для освещения производственного помещения будет использовано общее равномерное освещение. Дополнительное местное освещение, требуемое нормами для некоторых помещений, при необходимости устраиваются на единичных рабочих местах.

Светотехнический расчет.

Предварительно обосновывается величина освещенности в соответствии с нормами освещенности [т.4.1-4.6, л.2], принимаются коэффициенты отражения [т.5.1, л.2], определяется фон.

Задачей светотехнического расчета является определение мощности источников света, обеспечивающих нормированную освещенность при выбранном типе и расположении светильников.

Выбор схемы и расчет осветительных сетей цеха.

Напряжение сети электроосвещения цехов 380/220 В, при включении ламп на 220 В.

При наличии двухтрансформаторных подстанций рабочее и аварийное освещение питаются от разных трансформаторов ТП.

Согласно ПУЭ ток защитных аппаратов не должен превышать 25 А и 63 А для газоразрядных ламп. Число ламп на группу не должно превышать 20, а люминесцентных светильников на 2 и более ламп – не более 50.

Ввод в осветительный прибор и независимый, не встроенный в прибор, пускорегулирующий аппарат выполняется проводами или кабелем с изоляцией на напряжение не менее 660 В.

Для защиты и управления осветительными сетями широко используются автоматические выключатели, преимущественно серии А3100, АБ 25.

Применяются щиты ПР 9000.

Лампы ДРЛ запитываются шинопроводом ШОС, который получает питание от распределительного пункта 1. лампы накаливания и люминесцентные лампы получают питание от распределительных пунктов 2 и 3.

1/144

А3134/120 2/5,8 А3144/400 АВВГ(4х2,5) ПР9262-136

АВВГ(4х185)тг80 А3134/300 3/50,22

АВВГ(3х70+1х25) ПР9282-139

Рис.8.2.1 Принципиальная схема питающей сети рабочего освещения.

Комплектный осветительный шинопровод ШОС предназначен для выполнения четырехпроводных осветительных групповых линий в сетях 380/220 В с нулевым проводом на различные токи. Групповые линии выполнены на 18 и 21 светильник с лампами ДРЛ.

Таблица 8.2.2

Линия

Руст, кВт

Iр, А

Тип ШП

Iном, А

Iуд, кА

На 18 свет.

19,15

59

ШОС-73

63

5

На 21 свет.

22,34

69

ШОС-73

63

5

Таблица 8.2.1

Освещение завода.

Коорд. по плану

Длина

М

Шир.,м

H, м

S, М2

Rпот,

Rстен,

Rпол,

Фон

Е, лк

Кз

Типсвет

Кол-во Свет

24-23хВ-Г

114

36

11,7

4104

50

30

10

Ср

400

1,8

РСПО5-1000/D03

114

23-24хВ-В/4

6

24

11,7

144

50

30

10

Ср

200

1,8

ЛДР 2х80

20

23-24хВ/4-Г

6

12

11,7

72

50

30

10

Ср

30

ППР-200

7

43-44хВ/3-Г

6

18

11,7

108

50

30

10

Ср

50

ППР-200

10

44-45хВ/3-Г

6

18

11,7

108

50

30

10

Ср

50

ППР-20

9

43-47хБ/5-В

24

6

11,7

144

50

30

10

Ср

30

ППР-200

8

45-47хВ-Г

12

36

11,7

432

50

30

10

Ср

20

ППР-200

6

43-45хВ/1-В/2

12

6

11,7

72

50

30

10

Ср

20

ППР-200

3

43,5-45хВ-В/1

9

6

11,7

54

50

30

10

Ср

20

ППР-200

2

44-45хВ/2-В/3

6

6

11,7

36

50

30

10

Ср

20

ППР-200

1

Второй этаж

23-24хВ/1-Г

6

30

11,7

180

50

30

10

Ср

20

ППР-200

9

43-44хВ/1-Г

6

30

11,7

180

50

30

10

Ср

20

ППР-200

9

44-45хВ/2-Г

6

24

11,7

144

50

30

10

Ср

200

ИДР 2х80

20

43,5-У5хВ/1-В

9

6

11,7

54

50

30

10

Ср

20

ППР-200

2

43,5-У5хВ/1-В

9

6

11,7

54

50

30

10

Ср

20

ППР-200

2

Третий этаж

43,5-45хВ/2-В

9

12

11,7

108

50

30

10

Ср

50

ППР-200

10

43-44хВ/2-В/5

6

18

11,7

108

50

30

10

Ср

50

ППР-200

20

44-45хВ/5-Г

6

6

11,7

36

50

30

10

Ср

20

ППР-200

1

Выбор сечения проводов производится по расчетному току, по потерям напряжения и по механической прочности. По механической прочности допускается использование проводов сечением 2,5-50 мм2 [т.11. – 3, л.2].

По потере напряжения:

aMi – сумма моментов данного и всех последующих по направлению тока участков с тем же числом проводов в линии, что и на данном участке;

aмi – сумма моментов, питаемых через данный участок линии с иным числом проводов, чем на данном участке.

A – коэффициент приведения моментов [т.12-10, л.2].

DU= 5,7% [т.12-6, л.2] зависит от коэффициента мощности, номинальной мощности и коэффициента и коэффициента загрузки трансформатора.

С – коэффициент, значение которого принимается 44 [т.12-9, л.2].

Выбор кабелей производится по расчетному току:

IДОП >IРАСЧ.

По расчетному току выбираются защитные аппараты в соответствии с условиями:

IАВТ ³ IР

IУСТ ³ IР

Определим для примера сечение на головном участке линии:

Mn =

Принимаем стандартное сечение Fст = 50 мм2 . По таблице 12-11 [2] определяем потери напряжения по моменту и выбранному сечению.

DUост = 5,7-0,2 = 5,5

Расчет для остальных участков осветительной сети ведется аналогично. Результаты сводятся в таблицу 8.2.3

1

Lип

ИП

3

l12 2

Рис.8.2.2 Схема осветительной сети

Таблица 8.2.3

Выбор сечения по потери напряжения.

№ уч-ка

Длина, м

НГ, кВт

М=РL

M=pl

DUост

Fстандмм2

DU

Lип

3

144.94

435

5.7

50

0.2

L1

9

19.15

172.35

5.5

2.5

L2

9

19.15

172.35

5.5

2.5

L3

48

19.15

919.2

5.5

4

L4

48

19.15

919.2

5.5

4

L5

48

1.4

67.2

5.5

2.5

L6

78

1.1

85.8

5.5

2.5

L7

37

0.7

25.9

5.5

2.5

L8

45

1.79

50.55

5.5

2.5

L9

43.8

2.15

94.17

5.5

2.5

L10

52

3.58

186.16

5.5

2.5

L21

15.6

5.8

90.48

5.5

2.5

1

L11

12.8

1.6

49

4.5

2.5

L19

3

2.01

2.01

4.5

2.5

L20

3

2.01

2.01

4.5

2.5

L12

117

50.22

5875.7

5.5

35

3.8

L13

9

22.34

201.06

3.8

6

L14

9

22.34

201.06

3.8

6

L15

40.8

1.43

58.34

3.8

2.5

L16

36

1.25

45

3.8

2.5

L17

2

1.43

0.96

3.8

2.5

L18

4

1.43

0.96

3.8

2.5

Выбор сечения по расчетному току и окончательно принятое сечение приведены в таблице 8.2.4

Таблица 8.2.4

Выбор сечения по расчетному току.

№ уч-ка

НГ, кВт

Iр, А

Сечение

По Iр

Сечение

По потери U

Прин. сечение

Автом.

[2]

Iрасч, А

Lип

144,94

408

185

50

185

А3144

400

L1

19,15

59

16

2,5

16

А3124

100

L2

19,15

59

16

2,5

16

А3124

100

L3

19,15

59

16

4

16

А3124

100

L4

19,15

59

16

4

16

А3124

100

L5

1,4

2,17

2,5

2,5

2,5

А3124

50

L6

1,1

1,7

2,5

2,5

2,5

А3124

50

L7

0,7

1,1

2,5

2,5

2,5

А3124

50

L8

1,79

2,8

2,5

2,5

2,5

А3124

50

L9

2,15

2,15

2,5

2,5

2,5

А3124

50

L10

3,58

3,58

2,5

2,5

2,5

А3124

50

L21

5,8

8,9

2,5

2,5

2,5

А3134

120

L11

1,6

2,5

2,5

2,5

2,5

А3124

50

L19

2,01

6,2

2,5

2,5

2,5

А3124

50

L20

2,01

6,2

2,5

2,5

2,5

А3124

50

L12

50,22

146,53

70

35

70

А3134

300

L13

22,34

69

25

6

25

А3124

200

L14

22,34

69

25

6

25

А3124

200

L15

1,43

2,2

2,5

2,5

2,5

А3124

50

L16

1,25

1,93

2,5

2,5

2,5

А3124

50

L17

1,43

2,2

2,5

2,5

2,5

А3124

50

L18

1,43

2,2

2,5

2,5

2,5

А3124

50

8. Безопасность и экологичность 8.1 Разработка технических мер электробезопасности при электроснабжении завода механоконструкций

В электроустановках применяются следующие технические защитные меры:

Применение малых напряжений;

Электрическое разделение сетей;

Защита от опасности при переходе напряжения с высшей стороны на низшую;

Контроль и профилактика повреждений изоляции;

Компенсация емкостной составляющей тока замыкания на землю;

Защита от случайного прикосновения к токоведущим частям;

Защитное заземление;

Зануление;

Защитное отключение;

Применение электрозащитных средств.

Применение этих защитных мер регламентируется ПУЭ, ПТЭ, ПТБ и другими правилами.

8.2 Применение малых напряжений

Малое напряжение – номинальное напряжение не более 42 В, применяемое в целях уменьшения опасности поражения электрическим током. Если номинальное напряжение электроустановки не превышает длительно допустимой величины напряжения прикосновения, то даже долговременный контакт человека с токоведущими частями разных фаз или полюсов безопасен.

Наибольшая степень безопасности достигается при напряжениях до 10 В, так как при таком напряжении ток, проходящий через человека, не превысит 1 – 1,5 мА. В помещениях с повышенной опасностью и особо опасных, где сопротивление электрической цепи может быть снижено, ток, проходящий через человека, может в несколько раз превысить эту величину.

В производственных переносных электроустановках для повышения безопасности применятся малые напряжения 12 и 36 В. В помещениях с повышенной опасностью для переносных электроприемников рекомендуется номинальное напряжение 36 В. Но одним применением малых напряжений не достигается достаточная степень безопасности, дополнительно принимаются другие защиты – двойная изоляция, защита от случайных прикосновений и т. д.

Однофазное прикосновение к токоведущим частям, а также прикосновение к оказавшемуся под напряжением корпусу, даже незаземленному, при малом напряжении безопасно, так как ток, проходящий через человека даже при прикосновении к фазе, определяется сопротивлением изоляции и малым напряжением.

Источником малого напряжения может быть батарея гальванических элементов, аккумулятор, выпрямительная установка, преобразователь частоты и трансформатор.

В качестве источников малого напряжения наиболее часто применяются понизительные трансформаторы. Они отличаются от других источников малого напряжения простой конструкции и большей надежностью. Единственное слабое место понизительных трансформаторов – возможность перехода высшего напряжения первичной обмотки на вторичную. В этом случае прикосновение к токоведущим частям или незаземленному корпусу, оказавшемуся под напряжением, в сети малого напряжения равноценно такому же прикосновению в сети высшего напряжения. Для уменьшения опасности при переходе высшего первичного напряжения на сторону вторичного малого напряжения вторичная обмотка трансформатора заземляется или зануляется.

Применение в качестве источника малого напряжения автотрансформатора запрещена, так как сеть малого напряжения в этом случае всегда оказывается связанной с сетью высшего напряжения. Применение малых напряжений весьма эффективная защитная мера, но ее широкому распространению мешает трудность осуществления протяженной сети малого напряжения. Поэтому источник малого напряжения должен быть максимально приближен к потребителю.

8.3 Электрическое разделение сетей

Разветвленная сеть большой протяженности имеет значительную емкость и небольшое активное сопротивление изоляции относительно земли. Ток замыкания на землю в такой сети может достигать значительной величины. Поэтому однофазное прикосновение в сети даже с изолированной нейтралью является, безусловно, опасным.

Если единую, сильно разветвленную сеть с большой емкостью и малым сопротивлением изоляции разделить на ряд небольших сетей такого же напряжения, которые будут обладать незначительной емкостью и высоким сопротивление изоляции, то опасность поражения резко снизится.

Обычно электрическое разделение сетей осуществляется путем подключения отдельных электроприемников через разделительный трансформатор, питающийся от основной разветвленной сети. Возможна и другая схема, которая применятся значительно реже, а именно: разделение разветвленной сети на несколько приблизительно одинаковых несвязанных сетей.

Для разделения сетей могут применяться не только трансформаторы, но и преобразователи частоты и выпрямительные установки, которые должны связываться с питающей их сетью только через трансформатор. Область применения защитного разделения сетей – электроустановки напряжением до 1000 В, эксплуатация которых связана с повышенной степенью опасности, в частности передвижные электроустановки, ручной электрифицированный инструмент и т. п.

8.4 Защита от опасности при переходе напряжения с высшей стороны на низшую

Повреждение изоляции в трансформаторе может привести не только к замыканию на корпус, но и к замыканию между обмотками разных напряжений. В этом случае на сеть низшего напряжения накладывается более высокое напряжение, на которое эта сеть рассчитана. Наиболее опасен переход напряжения со стороны 6 или 10 кВ на сторону до 1000 В. Напряжение 35 кВ трансформируется в напряжение до 1000 В значительно реже (только собственные нужды подстанций).

В результате замыкания между обмотками сеть низшего напряжения оказывается под напряжение выше 1000 В, на которое изоляция сети и подключенного электрооборудования не рассчитана. Последствием этого случая может быть повреждение изоляции, замыкание на корпус и появление опасных напряжений прикосновения и шага.

Большая степень безопасности обеспечивается при заземлении средней точки обмотки малого напряжения. Кроме заземления или зануления вторичной обмотки применяется экран заземлений или экранная обмотка.

8.5 Контроль и профилактика повреждений изоляции

Контроль изоляции – измерение ее активного или омического сопротивления для обнаружения дефектов и предупреждения замыканий на землю и коротких замыканий. Состояние изоляции в значительной мере определяет степень безопасности эксплуатации электроустановок, поскольку сопротивление изоляции в сетях с изолированной нейтралью определяет величину тока замыкания на землю, а значит, и тока, проходящего через человека.

При глухо-заземленной нейтрали ток замыкания на землю и ток, проходящий через человека, не зависят от величины сопротивления изоляции. Но при плохом состоянии изоляции часто происходят ее повреждения, что приводит к замыканиям на землю (корпус) и к коротким замыканиям. При замыкании на корпус и несрабатывании защиты на отключение возникает опасность поражения электрическим током, так как нетоковедущие металлические части, с которыми человек нормально имеет контакт, оказываются под напряжением.

Чтобы предотвратить замыкания на землю и другие повреждения изоляции, при которых возникает опасность поражения электрическим током, а также выходит из строя оборудование, необходимо проводить испытания повышенным напряжением и контроль сопротивления изоляции.

Приемо-сдаточные испытания проводятся при вводе в эксплуатацию вновь смонтированных и вышедших из ремонта электроустановок.

При испытании повышенным напряжением дефекты изоляции обнаруживаются в результате пробоя и последующего прожигания изоляции. Выявленные дефекты устраняются, и затем проводятся повторно испытания исправленного оборудования.

Эксплуатационный контроль изоляции – измерение ее сопротивления при приемке электроустановки после монтажа периодически в сроки, установленные Правилами, или в случае обнаружения дефектов. Сопротивление изоляции измеряется на отключенной установке. При таком измерении можно определить сопротивление изоляции отдельных участков сети, электрических аппаратов, машин и т. п.

Сопротивление изоляции нелинейное – оно зависит от величины приложенного напряжения. Поэтому измерительное напряжение должно быть не ниже номинального напряжения электроустановки или несколько больше, что позволяет проверить электрическую прочность изоляции. Однако чрезмерно высокое измерительное напряжение может повредить изоляцию, не имеющую дефектов.

Чтобы получить представление о величине сопротивления изоляции всей сети, измерение надо производить под рабочим напряжением с подключенными потребителями. Такой контроль изоляции возможен только в сетях с изолированной нейтралью, так как в сети с глухозаземленной нейтралью малое сопротивление заземления нейтрали и прибор (мегомметр) показывает нуль. Этим способом можно измерить только сопротивление изоляции фаз относительно земли, так как сопротивление межфазной изоляции в работающей сети шунтируется источником питания и нагрузкой сети.

Измерение сопротивления изоляции под рабочим напряжением позволяет определить состояние изоляции всей сети, включая источник и электроприемники. Полученная таким образом величина сопротивления изоляции позволяет определить степень безопасности эксплуатации данной сети.

Постоянный контроль изоляции – измерение сопротивления изоляции под рабочим напряжением в течение всего времени работы электроустановки с действием на сигнал. Величина сопротивления изоляции отсчитывается по шкале прибора. При снижении сопротивления изоляции до предельно допустимой величины или ниже прибор подает звуковой или световой сигнал или оба сигнала вместе.

Защита от замыканий на землю, действующая на сигнал, применяется для обнаружения дефектов изоляции – глухих замыканий на землю. Такая защита реагирует на напряжение фаз относительно земли, на напряжение нулевой последовательности или на ток нулевой последовательности.

8.6 Компенсация емкостной составляющей тока замыкания на землю

Ток замыкания на землю, а значит, и ток, проходящий через человека, в сети с изолированной нейтралью зависит не только от сопротивления изоляции, но и от емкости сети относительно земли.

Поскольку невозможно уменьшить емкость сети, снижение тока замыкания на землю достигается путем компенсации его емкостной составляющей индуктивностью.

В случае неполной компенсации емкости наблюдается некоторая емкостная составляющая или при перекомпенсации индуктивная составляющая тока замыкания на землю. Однако и в этих случаях полный ток замыкания на землю снижается. Полная компенсация – явление редкое, обычно бывают отклонения в ту или другую сторону.

В сетях выше 1000 В активная проводимость изоляции невелика, по сравнению с емкостной и не влияет на ток замыкания на землю.

Компенсация емкостной составляющей тока замыкания на землю применяется обычно в сетях выше 1000 В, где компенсация служит для гашения перемежающейся дуги при замыкании на землю и снижения возникающих при этом перенапряжении. Одновременно уменьшается ток замыкания на землю.

8.7 Защита от прикосновения к токоведущим частям

Прикосновение к токоведущим частям всегда может быть опасным даже в сети напряжением до 1000 В с изолированной нейтралью, с хорошей изоляцией и малой емкостью и, конечно, в сетях с заземленной нейтралью и сетях напряжением выше 1000 В. В последнем случае опасно даже приближение к токоведущим частям.

В электроустановках до 1000 В применение изолированных проводов уже обеспечивает достаточную защиту от напряжения при прикосновении к ним. Изолированные провода, находящиеся под напряжением выше 1000 В не менее опасны, чем неизолированные.

Чтобы исключить прикосновение или опасное приближение к изолированным токоведущим частям, необходимо обеспечить их недоступность посредством ограждений, блокировок и расположения токоведущих частей на недоступной высоте или в недоступном месте.

8.8 Защитное заземление

Защитным заземлением называется преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением.

Заземление может быть эффективно только в том случае, если ток замыкания на землю не увеличивается с уменьшением сопротивления заземления. Это возможно в сетях напряжением свыше 1000 В с заземленной нейтралью. В этом случае замыкание на землю является коротким замыканием, причем срабатывает максимальная токовая защита.

При двойном глухом замыкании на землю эффективность заземления резко снижается, так как ток замыкания на землю зависит от величины сопротивлений тех заземлений, которые участвуют в цепи замыкания.

Заземляющее устройство – совокупность заземлителя и заземляющих проводников. По расположению заземлителей относительно заземленных корпусов заземления делятся на выносные и контурные.

Выносное заземление защищает только за счет малого сопротивления заземления.

В качестве искусственных заземлителей в контурном заземлении применяют стальные прямоугольные и круглые стержни, угловую сталь, стальные трубы, допускается применение электропроводящего бетона.

В открытых электроустановках отдельные корпуса электрооборудования присоединяются непосредственно к заземлителю проводами.

В ПУЭ нормируются сопротивления заземляющих устройств в зависимости от напряжения электроустановок и мощности источников питания.

8.9 Зануление

Занулением называется преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением. Зануление применяется в сетях напряжением

До 1000 В.

В сети с глухозаземленной нейтралью напряжением до 1000 В защитное заземление не эффективно, так как ток глухого замыкания на землю зависит от сопротивления заземления.

Основное назначение зануления – обеспечить срабатывание максимальной токовой защиты при замыкании на корпус. Для этого ток короткого замыкания должен значительно превышать уставку защиты или номинальный ток плавких вставок.

Повторное заземление нулевого провода снижает напряжение на корпусе в момент короткого замыкания, особенно при обрыве нулевого провода, тем самым повышает безопасность.

Устройство зануления проверяется при вводе электроустановки в эксплуатацию, периодически в процессе работы и после ремонта.

8.10 Защитное отключение

Защитное отключение – система защиты, обеспечивающая автоматическое отключение электроустановки при возникновении в ней опасности поражения электрическим током. Эта опасность возникает при следующих повреждениях электроустановки: замыкании на землю, снижении сопротивления изоляции, неисправностях заземления и устройства защитного отключения. Чтобы обеспечить безопасность, защитное отключение должно осуществлять некоторую совокупность из следующих защит: от глухих и неполных замыканий на землю, от утечек, автоматический контроль цепи заземления, самоконтроль, т. е. автоматический контроль исправности защитного отключения.

Защитное отключение можно применять в качестве единственной меры защиты; в качестве основной меры защиты совместно с дополнительным заземлением, а также в дополнение к заземлению. Наиболее высокие требования должны предъявляться к тем устройствам защитного отключения, которые применяются как единственная мера защиты.

В случае, когда защитное отключение является единственной мерой защиты, неисправность его оставляет электроустановку без защиты. Поэтому оно должно осуществлять самоконтроль, что исключает возможность работы электроустановки при неисправном защитном отключении. Самоконтроль не снижает требования к надежности защитного отключения, иначе возможны неоправданные перебои в электроснабжении.

Защитное отключение, применяемое как основная мера совместно с заземлением, обеспечивает достаточную степень безопасности, если оно удовлетворяет изложенным требованиям.

Если защитное отключение применено в дополнение к заземлению, оно должно обеспечивать безопасность при прикосновении к заземленным частям. При этом основные защитные меры должны быть надежны и обеспечивать безопасность без защитного отключения.

9. Защита сетей и установок напряжением до 1000 В.

При эксплуатации сетей и установок в них возможны повреждения различных видов. Повреждаемость их вызывается старением изоляции, дефектами заводского изготовления, попаданием влаги, коммутационными перенапряжениями, некачественными ремонтами, неправильным обслуживанием.

Характер повреждения и последствия различны. Для уменьшения размеров повреждений и обеспечения скорейшего восстановления нормального режима работы ЭП предусматриваются различные виды защиты.

Для проверки выбранных защит будут нужны расчеты однофазных и многофазных токов коротких замыканий (кз).

9.1 Расчет токов многофазных коротких замыканий

При расчете токов кз в сетях до 1000 В необходимо учитывать активное и индуктивное сопротивления короткозамкнутой сети. Сопротивление системы до вводов трансформаторов можно не учитывать и считать, что питание силовых трансформаторов осуществляется от ИБМ и периодическая составляющая тока кз практически не изменяется во времени и остается постоянной до момента его отключения (I”= I¥).

и – суммарные активные и реактивные сопротивления прямой последовательности цепи кз.

номинальное линейное напряжение сети до 1000 В.

Если отсутствуют данные о переходных сопротивлениях контактных соединений, можно применять:

Распределительные щиты на подстанциях – 15мОм;

На шинах ШП и промежуточных распределительных щитов – 20мОм;

На промежуточных распределительных щитов – 20мОм.

Сопротивление внешней питающей сети до понижающего трансформатора учитывается только индуктивное и приведенное к ступени НН:

Действительное сопротивление внешней питающей сети.

По трехфазному току кз определяют кз

;

Ударный ток кз:

Ударный коэффициент принимается:

Равным 1,3 при кз на распределительных щитах, питающихся непосредственно от трансформаторов;

Равным 1,0 при более удаленных точках кз.

Сопротивления кабельных линий сведены в таблицу 9.1.1

Таблица 9.1.1

Сопротивления кабельных линий.

Наименование

Линий

Длинна,

М

, мОм

, мОм

1

2

3

4

5

6

9ПР-10

25

1,98

0,07

49,5

1,7

9ПР-ЭП13

15

5,26

0,09

78,9

1,35

ШМА-ШП2

25

0,34

0,057

8,5

1,43

ШМА-ШП3

25

0,34

0,057

8,5

1,43

ШП2-2ПР

25

1,98

0,07

49,5

1,43

2ПР-19 (1)

20

6,41

0,087

128,2

1,74

19 (1) – 19 (2)

5

6,41

0,087

32,03

0,44

2ПР-19

8

6,41

0,087

5,28

0,69

ШП3-3РП

8

1,98

0,07

15,86

0,56

3ПР-В22

15

5,26

0,09

52,6

0,9

3ПР-В24

18

5,26

0,09

68,38

1,17

ШР3-9 (1)

20

5,26

0,09

105,2

1,8

9 (1) – 9 (2)

8

5,26

0,09

42,08

0,72

ШП3-2

5

5,26

0,09

26,3

0,45

ШМА-9ПР

10

0,34

0,057

3,4

0,57

Сопротивления шинопроводов сведены в таблицу 9.1.2.

Таблица 9.1.2

Сопротивления шинопроводов.

Наим. ШП

Что присоед.

На каком расстоянии, м

МОм

МОм

ШМА

9ПР

2

0,031

0,017

0,061

0,034

ШП3

20

0,031

0,017

0,61

0,034

ШП2

20

0,031

0,017

0,61

0,34

ШП2

2ПР

108

0,15

0,17

18,36

52,92

ШП3

3ПР

6

0,15

0,17

1,02

2,94

ЭП9

90

0,15

0,17

13,5

15,3

ЭП2

51

0,15

0,17

7,65

8,67

Расчет трехфазных, двухфазных и ударных токов кз сведен в таблицу 9.1.3.

Таблица 9.1.3. Ударные токи КЗ.

Точка

Кз

,

МОм

,

МОм

, А

, А

, А

1

2

3

4

5

6

1

18,1

3,6

12112,44

10537,82

22202,1

2

36,56

4, 204

6074,02

5284,4

7451,0

3

106

5,95

2104,27

1830,71

2967,02

4

135,46

5,55

1648,79

1434,45

2324,8

5

50,1

6,46

4425,03

3849,78

6239,3

6

86,3

24,82

2489,24

2165,64

3509,8

7

234,5

25,56

947,16

824,03

1326,03

8

266,55

2,18

838,57

729,56

1174,0

9

157,58

25,51

1400,28

1218,25

1974,39

10

41,6

5,03

5334,45

4640,97

7521,57

1

2

3

4

5

6

11

85,62

22,13

2527,65

2199,05

3563,99

12

127,7

22,85

1724,72

1500,51

2414,6

13

95,5

14,15

2315,34

2014,35

3264,64

14

78,34

6,61

2843,22

2473,60

3980,51

15

150,94

7,51

1479,09

1286,80

2085,51

16

166,72

7,78

1339,29

1165,18

1888,39

9.2 Расчет токов однофазных кз.

Согласно ПЭУ однофазный ток кз можно рассчитать по формуле:

– сопротивление петли фаза – нуль

полное сопротивление трансформатора.

Для комплектных шинопроводов вместо сопротивлений обратной последовательности задается сопротивление петли фаза-нуль, включающее сопротивление шинопровода и сопротивления аппаратов и переходных контактов, начиная от нейтрали понижающего трансформатора.

Сопротивление трансформатора зависит от сопротивления обмоток.

Для электропроводок, выполненных 3-х или 4-х проводной линией проводами в трубах или кабелями в алюминиевой оболочке, зависит от способа прокладки.

Сопротивления кабельных линий приведены в таблице 9.2.1., шинопроводов – 9.2.2.

Таблица 9.2.1

Сопротивления кабельных линий.

Наименование кабельной линии

Длинна,

М

, мОм

1

2

3

4

9ПР-10

25

3,08

77

9ПР-13

15

7,49

112,35

ШМА-ШП2

25

0,69

17,25

ШМА-ШП3

25

0,69

17,25

ШП2-2ПР

25

3,08

77

2ПР-19 (1)

20

17,8

356

19 (1) – 19 (2)

5

17,8

89

2ПР-19

8

17,8

142,4

ШП3-3ПР

8

3,08

24,64

3ПР-В22

10

7,49

74,9

3ПР-В22

5

17,8

89

3ПР-В24

13

7,49

97,37

3ПР-В24

5

17,8

89

ШП3-19 (1)

20

11,3

226

9 (1) – 9 (2)

8

11,3

90,4

ШП2-2

5

7,49

37,45

ШМА-9ПР

10

1,5

15

Таблица 9.2.2

Сопротивления шинопроводов.

Наименование ШП

Что присоединяется

На каком расстоянии

, мОм

ШМА

9ПР

2

0,123

0,246

ШП3

20

0,123

2,46

ШП2

20

0,123

2,46

ШП2

2ПР

108

0,49

52,92

ШП3

3ПР

6

0,49

2,94

ЭП9

90

0,49

44,1

ЭП2

51

0,49

24,99

Данные и расчет однофазных токов кз приведены в таблице 9.2.3

Таблица 9.2.3

Расчет однофазных токов КЗ.

Точка кз

1

2

3

4

5

6

7

8

МОм

40

55,2

132,3

167,6

59,71

189,6

545,6

350,1

, А

5500

3982,2

1664

1313

3684

1160,2

403,2

628,4

Точка кз

9

10

11

12

13

14

15

16

МОм

332,0

59,71

329,81

420,21

367,26

87,29

176,3

176,3

, А

662,6

3684

667,1

523,6

599

2520,3

1248,2

1248

9.3 Защита сетей и ЭП

Все линии силовой сети, отдельные разветвленные участки, ответвления и ЭП должны иметь защиту от коротких замыканий.

Аппараты защиты необходимо устанавливать:

На вводах от ТП;

На отходящих от щитов линиях;

В местах ответвления от питающей магистрали к защитам (или ввод в щитах);

В местах, где сечение проводников уменьшается, или где это необходимо для соблюдения селективности.

В случае необходимости разрешается относить аппараты защиты от начала питающей линии по направлению ответвления. Для ответвлений, выполненных проводниками в трубах или с негорючей оболочкой, прокладываемых в труднодоступных местах, длина незащищенного участка может быть до 30 метров.

В качестве защитных аппаратов применяются предохранители или автоматические выключатели.

В тех случаях, когда по условиям технологического прогресса или по режиму работы сети возможны длительные перегрузки проводов (кабелей) требуется также защита от перегрузки.

В качестве аппаратов защиты от перегрузки используются магнитные пускатели с тепловым реле и автоматы с тепловыми расцепителями.

Сочетание различных аппаратов (вышестоящего и нижестоящего) определяется условием селективности зашиты.

Вопрос о возможности осуществления избирательности защиты решается в каждом конкретном случае вероятностными характеристиками автоматов и предохранителей с использованием карты селективности. В логарифмическом масштабе строятся защитные характеристики аппаратов всех ступеней, наносятся I расч. max и токи кз и определяется время срабатывания каждого аппарата.

Селективное отключение возможно, если:

– время отключения вышестоящей ступени зашиты, – нижестоящей.

Соотношения между И Для различных аппаратов различны.

Выбор плавких вставок предохранителей при защите от коротких замыканий.

Номинальные токи должны быть равны или несколько больше длительно допустимых токов защищаемых проводов.

Плавкая вставка должна надежно выдерживать кратковременные пики тока, вызываемые пусками ЭП и другими эксплуатационными режимами сети.

Ответвления к ЭП, не имеющим :

, Номинальный ток ЭП. Ответвления к ЭД. , пусковой ток.

A=2,5 для легких условий пуска.

A=2 для тяжелых условий пуска.

При нескольких подключенных к линии ЭД или линии, питающей смешанную нагрузку

– максимальный расчетный ток в линии от ЭП

– коэффициент использования

– номинальный ток ЭД с наибольшим пусковым током

– наибольший пусковой ток из ЭД, входящих в группу.

По расчетным значениям выбирают плавкую вставку согласно шкале стандартизированных значений номинальных токов плавких вставок и тип предохранителя.

ПЭУ нормирует соотношение между допустимыми токами проводов и токами плавких вставок:

кратность допустимого тока проводника по отношению к току плавкой вставки.

Для обеспечения минимального времени отключения однофазного тока кз необходимо проверить выполнение условия:

M=3 для помещений с нормальной окружающей средой, m=4 – для взрывоопасных помещений.

Условие является условием для выбора предохранителя для защиты от перегрузки. Выбор автоматов при защите от коротких замыканий.

1.

2.

Номинальные токи распределителей выбираются в зависимости от типа автомата и наличия тепловых или комбинированных расцепителей.

Номинальные токи тепловых расцепителей для ответвлений и линий:

,

Для одиночного ЭП;

расчетный ток линии, питающий группу ЭП.

Для автоматов с комбинированным расцепителем обязательна проверка невозможности срабатывания электромагнитных расцепителей от.

– ток отсечки расцепителя,

пиковый ток линии или пусковой ток ЭП

Необходима проверка условий:

– защита от перегрузок

M=3 для помещения с нормальной окружающей средой; m=6 – со взрывоопасной.

1. Определяем и выбираем типы предохранителей

А

Принимаем НПН – 60 А.

Для ЭП, запитанных по цепочке

А

Учитываем два условия:

А

А

Выбираем ПНП – 60 А.

Выбор остальных предохранителей сведен в таблицу 9.3.1

Таблица 9.3.1

Выбор предохранителей.

Ответвления к ЭП №

, А

Тип предохранителя

, А

19

8,8

НПН – 60

10

19 (1) – 19 (2)

10,3

10

10

132

ПН2 – 250

150

13

48

ПН2 – 100

50

В22

30,8

40

В24

3,4

НПН – 60

10

Определим типы автоматов и их номинальные токи для ЭП.

Токи расцепителей выбирают больше номинальных токов ЭП.

Таблица 9.3.2

Автоматические выключатели.

Ответвления к ЭП №

, А

Тип АВ

, А

9

18+18

АЕ 2056

40

2

129,8

А 3716

125

Устанавливаем невозможность срабатывания АВ при пуске ЭД.

А

А

А

А

Определяем токи в питающих линиях к распределительным пунктам и шинопроводов.

Таблица 9.3.3. Токи в питающих линиях.

Ответв. к

2ПР

3ПР

9ПР

ШП2

ШП3

ШМА – 1

ШМА – 2

, А

11,39

51,36

70,36

320

340

467,7

409,8

Пиковый ток линии определяется при пуске наиболее мощного ЭП:

2ПР:

А

3ПР: А

9ПР: А

ШП2: А

ШП3: А

Таблица 9.3.4. Ток расцепителя АВ.

Ответвл. к

, А

, А

, А

Тип АВ

А

А

2ПР

11,39

154

20

АЕ2055

100

240

3ПР

29,9

160,3

31,5

АЕ2055

100

378

Условие выполняется:

2ПР: 240>154×1,25=192,5 А

3ПР: 378>160×1,25=200 А

Таблица 9.3.5

Выбор предохранителей.

Ответвл.

К

, А

, А

Тип

П

, А

, А

9ПР

350

140

ПН2 – 400

200

400

3ПР

160

64

ПН2 – 250

200

250

2ПР

154

61,1

200

250

ШП2

803

321

ПН2 – 600

400

600

ШП3

1094

438

500

600

Рассчитанное будет удобно свести в таблицу.

Будет проверено условие

Таблица 9.3.6.

Проверка по току.

Ответвл.

К

, А

Тип

Аппар.

1

2

3

4

5

6

7

8

ЭП10

55

ПН2-250

150

0,33

49,5

90

ЭП13

20

ПН2-100

50

0,33

16,5

38

ЭП19 (1-2)

7,4

НПН -60

10

0,33

3,3

29

ЭП19

3,7

10

0,33

3,3

29

1

2

3

4

5

6

7

8

В22

11

ПН-100

40

1

40

38

В24

1,2

НПН-60

10

1

10

38

ЭП9 (1-2)

18,2

АЕ2056

40

480

0,22

8,8

38

ЭП2

129,8

А3716

125

1500

0,33

41,25

210

2ПР

11,39

АЕ2055

20

240

0,22

4,4

90

3ПР

29,9

31,5

378

0,22

6,93

90

2ПР

154

ПН2-250

200

0,33

66

90

3ПР

160

200

0,33

66

90

9ПР

350

ПН2-400

200

1

200

255

ШП2

803

ПН2-600

400

0,33

132

510

ШП3

1094

500

0,33

165

510

Проверка по условиям:

Таблица 9.3.7.

Ответвл. к

, А

, А

, А

, А

, А

2ПР

2165,64

240

360

1160,2

300

ЭП9

2199,05

480

720

667,1

600

ЭП2

2014,35

1500

2050

599

180,0

3ПР

2473,60

378

567

2520,3

472,5

Чувствительность защиты участков сети к не проверяем, так как их протяженность небольшая и токи достаточны для обеспечения нужной чувствительности.

Необходимо проверить чувствительность предохранителей:

Таблица 9.3.8.

Проверка чувствительности.

Ответвления к

, А

, А

, А

ЭП10

1663,57

150

450

ЭП13

1313,04

50

200

2ПР

1160,15

200

600

ЭП19 (1-2)

403,2

10

30

ЭП19

628,36

10

30

3ПР

2520,33

200

600

В22

1248,16

40

120

В24

1247,94

10

30

9ПР

3982,2

200

600

ШП2

3684,47

400

1200

ШП3

3684,47

500

1500

Магнитные пускатели предназначены для управления (пуска, остановки) АД мощностью до 75 кВт, а также для защиты их от перегрузок.

Номинальный ток теплового реле выбирается по номинальному току ЭП:

Выбор магнитных пускателей приведен в таблице 9.3.9.

Таблица 9.3.9.

Ответвл. к

, А

Типы

В пускателе

Пускателя

Тепл. реле

В22

11

ПМЕ-222

ТРН-25

12,5

В24

1,2

ПМЕ-122

ТРН-10

12,5

3ПР

72,6

ПАЕ-421

Выберем автомат, защищающий линию, питающую ШМА.

А

А

Принимаем АВМ-4Н

12×200>1,25×1494

, 770>0,33×200

10537,82>1,5×2400=3600 А

5500>1,25×2400

Аналогично выбирается секционный автомат АВМ-10Н по номинальному току шин (расчетному).

Заключение

В данном дипломном проекте было рассмотрено электроснабжение завода механоконструкций, а именно, были рассчитаны электрические нагрузки завода и его освещение, выбраны схемы его внешнего и внутреннего электроснабжения. Также был проведен расчет электроснабжения инструментально-механического цеха.

В результате расчета была определена расчетная нагрузка, осветительная нагрузка и суммарная расчетная нагрузка завода Sр =49661.3 кВА.

В результате расчета внутреннего электроснабжения завода были выбраны мощности цеховых трансформаторных подстанций и схема распределительных сетей завода. Было выбрано основное оборудование на напряжениях 110 и10 кВ.

Для ГПП применена схема “Два блока с выключателями и неавтоматической перемычкой со стороны линий”.

Рассмотрен вопрос электроснабжения отдельно взятого цеха. На примере цеха №1 (инструментально-механического) произведен расчет силовой и осветительной нагрузки и выбрано основное оборудование. Также рассчитаны токи КЗ и выбраны аппараты защиты.

В экономической части дипломного проекта было проведено технико-экономическое сравнение двух вариантов внешнего электроснабжения завода на 35 и 110 кВ. В результате сравнения суммарных затрат на внешнее электроснабжение было выбрано питающее напряжение 110 кВ с меньшими годовыми затратами.

В разделе “Безопасность и экологичность” был рассмотрен вопрос о разработке мероприятий по охране труда электрики при электроснабжении завода механоконструкций.

Список литературы

1. Справочник по проектированию электроснабжения, линий электропередачи и сетей / Под ред. Я. М. Большама, В. И. Круповича, М. Л. Самовера – М.: Энергия, 1974. – 696с.

2. Правила устройства электроустановок. (7 издание) – М.: Энергия, 2005. – 645с.

3. Справочник по электроснабжению промышленных предприятий/Под ред. А. А. Федорова. – М.: Энергия, 1973.

4. ЭСПП в примерах и задачах / Под ред. А. И. Артемова. – С.: 2000. – 300с.

5. Справочник по проектированию электроэнергетических систем / Под ред. С. С. Рокотяна. – М.: Энергоатомиздат, 1985. – 348с.

6. Электроснабжение промышленных предприятий и установок/Под ред. Липкина Б. Ю. – М.: Высш. Школа, 1981. – 376с.

7. Электрическая часть станций и подстанций / Под. ред. Б. Н. Неклепаева. – М.: Энергия, 1972. – 336с.

8. Справочная книга для проектирования электрического освещения/Под ред. Г. М. Кнорринга. – Л.: Энергия, 1976. – 384с.

9. Основы электроснабжения промышленных предприятий/Под. ред. А. А. Ермилова. – М.: Энергия, 1975. – 208с.

10. Электромагнитные переходные процессы/Под. ред. С. А. Ульянова. – М.: Энергия, 1970. – 520с.

11. Основы техники безопасности в электроустановках / Под. ред. П. А. Долина. – М.: Энергоатомиздат, 1984. – 447с.

Приложения

Приложение 1

Генплан и план распределительной сети.

Приложение 2

Силовая схема электроснабжения цеха.

Приложение 3

Световая схема электроснабжения цеха.

Приложение 4

Расчетная схема замещения.



Зараз ви читаєте: Электроснабжение завода механоконструкций