Исследование условий синтеза германатов-висмута (III) в неводных растворителях

В. В.Девяткин

Уровень развития химии на современном этапе во многом определяется экспериментальными достижениями в синтезе новых веществ и материалов с заданными свойствами. Многообразием уникальных физических и химических свойств обладают соединения со структурой силленита и эвлитина [1, 2]. К подобным соединениям относятся германаты висмута типа Bi2GeO5, Bi4Ge3O12, Bi12GeO20, нашедшие применение в оптоэлектронике, пьезотехнике, голографии, акустооптике, радиоэлектронике, рентгеновской и позитронной томографии. Пространственно-временные модуляторы света, линии задержки телевизионных сигналов, фильтры промежуточной частоты для цветного телевидения, детекторы g – излучения – вот далеко не полный перечень областей применения и приборов, действующих на основе германатов висмута.

Указанные соединения получают твердофазным синтезом, требующим высоких температур, больших энергозатрат и многократного диспергирования компонентов. Поэтому определенный интерес представляет разработка методов получения германатов висмута в мягких условиях, в частности – из растворов. Одной из основных причин, затрудняющих синтез соединений этим методом, является поведение ионов висмута (III) и германат-ионов в водной среде. Первые стабильны в кислых растворах, последние – в щелочных. Обменная реакция между ними неизбежно приводит к соосаждению гидроксида висмута (или его основных солей) и оксида германия. Следовательно, необходимо в первую очередь найти растворители, которые бы стабилизировали одновременно оба исходных компонента, исключая их гидролиз.

В качестве растворителей нами были выбраны глицерин, этиленгликоль (ЭТГ), диметилформамид (ДМФА), этанол. Исходными веществами являлись безводный хлорид висмута (III) и синтезированный нами по методике [3] метагерманат калия K2GeO3. Равновесия в бинарных системах исследовались в водяном (масляном) термостате в интервале температур 25 – 900 C. Температура поддерживалась постоянной с точностью -+ 0,10 C. Систему осадок – насыщенный раствор выдерживали при непрерывном перемешивании в течение 9-10 суток. После установления равновесия проводили количественное определение компонентов. Содержание германия (IV) в растворах определялось методом гравиметрического осаждения германолибдата 8-оксихинолина [4, 5]. Содержание в жидкой фазе ионов Bi3+ количественно определялось комплексонометрическим титрованием с ксиленоловым оранжевым [6,7].

Ранее проведенные исследования [8, 9] показали, что многоатомные спирты и моносахариды образуют с ионами Ge4+ комплексные кислоты, более сильные, чем германиевые. Отношение Ge : L в образующихся комплексах с глицерином равно 1 : 1 и 1 : 2 , с гексолами и гексозами 1 : 2. При низких значениях pH и больших концентрациях GeO2 и лиганда возможно образование полимерных комплексов. Константа нестойкости понижается с увеличением концентрации полиола в растворе [4], что связано с изменением диэлектрической проницаемости последнего, пространственным расположением OH-групп и конформацией лиганда в ряду C2H5OH – ЭТГ – глицерин-глюкоза-галактоза-маннит-фруктоза.

Проведенные нами исследования показали, что растворимость K2GeO3 и BiCl3 увеличивается с ростом температуры линейно. Как следует из данных табл. 1, с увеличением углеродной цепи и числа OH-групп в лиганде в ряду C2H5OH – ЭТГ – глицерин растворимость K2GeO3 и BiCl3 возрастает. Сравнение соответствующих величин используемых растворителей [10] указывает на уменьшение показателей констант автопротолиза (pKai) и увеличение донорных чисел (DN) в указанном ряде растворителей. Малая энергия активации и небольшая сила кислоты-катиона Bi3+ в сравнении с K+ обусловливают меньшую растворимость BiCl3 в ДМФА и C2H5OH, в отличие от K2GeO3. Большой кристаллографический радиус аниона GeO32- также объясняет невысокую растворимость K2GeO3 в ДМФА и С2H5OH, которая увеличивается с ростом способности растворителя сольватировать анионы в ряду C2H5OH – ЭТГ – глицерин. Использование глицерина в качестве среды или добавки к какому-либо растворителю позволяет... значительно повысить концентрацию ионов Bi3+ и Ge4+ в растворах.

Исследования [II] показали возможность образования комплексных соединений состава BiCl3 х 6 ДМФА и BiCl3 х 4 ДМСО. Процесс комплексообразования BiCl3 способствует повышению концентрации ионов Bi3+ в указанных средах.

Анализ полученных результатов показывает, что наибольшая растворимость K2GeO3 и BiCl3 наблюдается в сильно ассоциированных растворителях с H-связью, способных к образованию гетеромолекулярных ассоциантов, наименьшая – в апротонном высокодиполярном ДМФА.

Таблица 1. Растворимость BiCl3 и K2GeO3 в неводных растворителях, г/100 г раствора

СистемаТемпература 0С
П/п25304050
1Глицерин33,3633,4334,3735,13
BiCl360708090
35,2936,1636,3036,92
2Этанол7,447,477,697,85
BiCl37,948,178,298,55
3ДМФА8,048,148,238,32
BiCl38,548,588,929,14
4ЭТГ28,6129,0029,1829,66
K2GeO329,8830,2730,4930,85
5Этанол22,8422,9023,2823,46
K2GeO323,8724,1524,9525,46
6ДМФА24,8625,0125,5826,32
K2GeO326,4627,0927,4327,61

С целью изучения возможности синтеза германатов висмута в неводных растворителях исследовалось взаимодействие между компонентами системы BiCl3 – K2GeO3 – C2H5OH методом остаточных концентраций И. В.Тананаева при 250C. При составлении смесей были взяты растворы BiCl3 и K2GeO3 в этаноле с определенными концентрациями соответствующих компонентов. Смеси составляли в следующем порядке: в реакционные сосуды вводили рассчитанный объем раствора K2GeO3 и к нему добавляли исходный раствор BiCl3. Общий объем каждой смеси составлял 50 мл. Растворы с выпавшими осадками перемешивали в течение 14 суток до установления равновесия. После этого жидкие и твердые фазы разделялись фильтрованием и в первых находили остаточные концентрации ионов Bi(III) и Ge(IV) по указанной выше методике. Электропроводность равновесных насыщенных растворов измеряли с помощью реохордного моста P-38. Показатель активности ионов водорода регистрировали на pH-метре pH-150.

Результаты исследования показывают, что остаточные концентрации германат-ионов по мере увеличения отношения c (Bi3+)/с(Ge4+) в исходных растворах уменьшаются. В области щелочных растворов (pH>1,87) ионы висмута (III) отсутствуют в равновесной жидкой фазе, так как полностью реагируют с германат-ионами в строгой стехиометрии. Об этом свидетельствует неизменное отношение количеств висмута (III) и германия (IV) в равновесной твердой фазе, равное 1,33. Осадки с указанным соотношением компонентов были отделены от жидких фаз и промыты этанолом до отрицательного аналитического сигнала на ионы калия (тетрафенилборат) и хлора (нитрат серебра). После прокаливания (5000С) полученной мелкодисперсной фазы и ее химического анализа было установлено, что состав твердой фазы соответствует соединению Bi4 Ge3O12.

Bi Ge

Найдено, % 67,08 17,44

Вычислено

Для Bi4Ge3O12

В % 67,11 17,48

В области кислых растворов метагерманат калия образует с хлоридом висмута твердые фазы переменного состава с преимущественным содержанием в осадках германия (VI).

Список литературы

1. Скориков В. М., Каргин В. Ф., Каргин Ю. Ф. //Неорг. материалы. 1984. Т.20. С.20, С.815.

2. Каргин Ю. Ф., Каргин В. Ф., Скориков В. М. Конф. по актуальным проблемам получения и применения сегнето – и пьезоэлектрических материалов. Тез. докл. М.: НИИТ ХИМ., 1984. С.277.

3. Тананаев И. В., Шпирт М. Я. Химия германия. М.: Химия, 1967. 452 с.

4. Назаренко В. А. Аналитическая химия германия. М.: Наука, 1973. 240 с.

5. Гиллебранд В. Ф., Лендель Г. Э., Брайт Г. А., Гофман Д. И. Практическое руководство по неорганическому анализу. М.: Химия, 1966. С.350.

6. Дятлова Н. М., Темкина В. Я., Попов К. И. Комплексоны и комплексонаты металлов. М.: Химия, 1988. С.362.

7. Karadarov B. P., Nenova P. P., Ivanova K. P. //J. Inorg. a. Nucl. Chem. 1976. V.38. P.103.

8. Tchakirian A. //Ann. Chim. 1939. V.12. P.415.

9. Назаренко В. А., Флянтикова Г. В. //Журн. неорган. химии. 1963. Т.8. С.1370.

10. Фиалков Ю. Я. Растворитель как средство управления химическим процессом. Л.: Химия, 1990. С.220.

11. Черкасова Т. Г., Татаринова Э. С., Трясунов Б. Г. //Журн. неорган. химии. 1992. Т.37. С.95.


Зараз ви читаєте: Исследование условий синтеза германатов-висмута (III) в неводных растворителях