Исследование воды качественный и количественный анализ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ КАЗАХСТАН ВОСТОЧНО-КАЗАХСТАНСКОЙ ОБЛАСТИ ГОРОДА УСТЬ-КАМЕНОГОРСКА ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ “СРЕДНЯЯ ШКОЛА № 24”

Направление: “Здоровая природная среда – основа реализации программы 2030”

Секция: Химия

Тема проекта: “…ЕЩЕ РАЗ О ВОДЕ”

Выполнила:

Ученица 10 “М” класса

Карпенко Евгения

Руководитель:

Ткачева Ирина Михайловна,

Учитель химии

Г. Усть – Каменогорск

2008 год

Оглавление

Абстракт………………………………………………………………………..3

Введение………………………………………………………………………..7

1.Основная часть. ……………………………………………………………..9

1.1Влияние различных примесей на качество питьевой воды……………..9

1.2 Влияние различных примесей на качество питьевой воды и очистке ее от примесей “Чистая вода”……………………………………………………..11

1.3 Альтернативные методы очистки воды…………………………………13

2.Исследовательская часть…………………………………………………..16

2.1 Определение качественного состава питьевой воды…………………..16

2.2 Структура воды……………………………………………………………26

2.3 Приготовление талой воды………………………………………………29

2.4 Качественный и количественный состав талой воды……………………………………………………………………………..29

Заключение………………………………………………………………….. 32

Список используемой литературы…………………………………………..33

Приложение……………………………………………………………………34

Абстракт

Актуальность темы исследования: в настоящее время одной из самых актуальных, глобальных проблем человечества, является проблема чистой, питьевой воды. Если запасы питьевой воды составляют 1,8 %, то по – настоящему чистой намного меньше. Многие регионы земного шара, вообще не знают, что такое чистая вода. Актуальна эта проблема и для нашего города. Неслучайно в 2000 году, была принята программа “Чистая вода”, а также в 2008 программа “Питьевая вода”.

Постоянно ухудшающееся здоровье наших горожан говорит о том, что употребляется далеко не чистая вода. Исходя из этого, мы ставим следующую цель в своей работе.

Цель научного проекта: исследовать качественный состав питьевой воды города Усть-Каменогорска, показать влияние структурированной воды на развитие живых организмов.

Гипотеза: если качественный и количественный состав исследуемой воды не всегда соответствует нормам ГОСТ, содержание некоторых веществ в воде может привести к серьезным заболеваниям, существуют доступные способы улучшения качества питьевой воды.

Задачи:

¾ Изучить свойства воды с точки зрения ее структуры.

¾ Изучить тепловые особенности воды

¾ Сравнить строение молекул воды с другими трехатомными молекулами

¾ Выделить из “обычной” воды “тяжелую” ( 21 Н2 О178 )

¾ Изучить особенности талой воды

¾ Приготовить талую воду одним из шести способов

¾ Изучить влияние структурированной воды на развитие живых организмов

Методы исследования: изучение теоретического материала и проведение исследований качественного анализа по методике Танаева и количественного анализа, включающего атомно-эмиссионный метод.

Результаты и выводы: талая вода уже за такой малый период времени по своему воздействию намного лучше обычной.

Области практического применения: растениеводство, животноводство, медицина.

Дерек

Зерттеу тақырыбының өзектілігі: қазіргі уақытта адамзаттың өзекті, ауқымды мәселелерінің бірі таза, ішетін су болып табылады. Егер ішетін су қоры 1,8 құраса, соның ішінде нағыз таза әлдеқайда аз болады. Жер шарының көптеген аймақтары таза судың не екенін білмейді. Бұл мәселе біздің қала ушін де өзекті. 2000 жылы “Таза су” бағдарламасы бекер қабылданған жоқ, 2008 жылы “Ауыз су” бағдарлама жарыққа шықты.

Біздің қала тұрғындарының таза суды пайдаланбағандықтан, денсаулығы үнемі нашарлауда. Осыған байланысты біз өз жұмысымызда келесі мақсаттарды қойдық.

Жұмыстың мақсаты: Өскемен қаласындағы ішетін судың сапалық құрамың зерттеу құрамды судың тірі ағзаның дамуына ықпал етуін көрсету.

Гипотеза: егер зерттеелетін судың сапалық және мөлшерлік құрамы ГОСТ нормасына әр қашанда сәйкес келмесе, судағы кейбір заттардың болуы салмақты ауруларға әкеп соқтыруы мүмкін. Сондықтан су сапасын жақсартудың қолдан келетін тәсілдері бар.

Міндеттер:

¾ Судың құрылымы бойыншақасиеттерін зерттеу

¾ Жылылық ерекшеліктерін зерттеу

¾ Басқа үшатомдық молекулармен су молекуласын салыстыру

¾ Құрамынан “жай” және “ауыр” суды айыру

¾ Еріген судың ерекшеліктерін зерттеу

¾ Еріген суды әзірлеу

¾ Құрылымдық судың тірі ағзаға ықпал етуін зерттеу

Зерттеу әдістері: теориялық материалдарды зерттеу және Танаев әдістемесі бойынша сапалық сараптамасын зерттеуді өткізу және атомдық-эмиссиондық әдістемемен мөлшерлік сараптама өткізу.

Нәтиже және қорытынды: қысқа мерзім ішінде еріген судың жай судың қасиеттеріне қарағанда артықшылығы мол.

Іс жүзінде қолдану аймағы: өсімдік шаруашылығы, мал шаруашылығы, медицина.

Abstract

Actuality of research: at present one of the most actual, global human problems is a problem of clean, drinking water. If spares of drinking water makes up 1.8% that on the present pure is much less. Many regions of the globe in general do not know, what a clean water is. This problem is actual for our city too. It’s no accident that 2000 year “Clean water” was accepted a program, but 2008 programs “Drinking water”.

Constantly, declining health of our townsfolk speaks that for from clean water. On the basis of it, we put the necessary purpose in our work.

The object of research: research the qualitative composition of drinking water of Ust-Kamenogorsk city, show the influence of outline water to development of alive organisms.

Hypothesis: if qualitative and quantitative composition of under investigation water is not always corresponds to the rate of SSS, contents some material in water can bring serious diseases, the available ways of the improvement quality drinking water exist.

Problems:

¾ Studying water properties from a perspective of its structure

¾ Studying thermal features of water

¾ Comparison molecule structure of water with other three-nuclear molecules

¾ Isolate from “usual” water to

¾ Studying features of melt-water

¾ Preparation of melt-water in one of the six ways

¾ Studying the influence of the structured water on the development of alive organisms

Methods of investigation: study of the theoretical material and undertaking the studies of the qualitative analysis as Tanaev’s methods and quantitative analysis, including atomic-emission method.

Results and conclusions: melt-water is mush more influenced in comparison than “usual” in a short space of time.

Areas of practical application: plant growing, animal industries, medicine.

Введение

Цель научного проекта: исследовать качественный состав питьевой воды города Усть-Каменогорска, показать влияние структурированной воды на развитие живых организмов.

При проведении эксперимента учитывался не только качественный состав указанной воды, но и количественный.

Объект исследования : вода трех районов Октябрьского, Ульбинского и КШТ, а также Талая вода.

Предмет исследования : изучение показателей качественного и количественного составов воды трех районов, оценка экологического состояния. Выявление чистой воды и источников ее загрязнения.

Задачи:

– Изучение свойств воды с точки зрения ее структуры

– Изучение тепловых особенностей

– Сравнение молекулы воды с другими трехатомными молекулами

– Выделение обычной и тяжелой воды

– Изучение особенностей талой воды

– Приготовление талой воды

– Изучение влияния структурированной воды на развитие живых организмов

Гипотеза: если качественный и количественный состав исследуемой воды не всегда соответствует нормам ГОСТ, содержание некоторых веществ в воде может привести к серьезным заболеваниям, существуют доступные способы улучшения качества питьевой воды.

Исследовательский инструмент: качественный анализ, включающий в себя дробный метод, который разработал Н. А Танаев. Он открыл ряд новых, оригинальных реакций, позволяющих обнаруживать в растворе какой-либо определенный катион в присутствии большого числа других катионов, не прибегая к их предварительному осаждению. Количественный анализ, включающий атомно-эмиссионный метод, основанный на излучении атомных спектров вещества, возбуждаемых в горячих источниках света, а также сравнение и обобщение информации с литературными источниками.

Область практического применения работы: растениеводство, животноводство, медицина.

Этапы работы:

– Изучение специальной литературы с целью подбора методик для определения показателя качества воды

– Экспериментальная часть, связь с лабораторией АО “Казцинк”

– Обработка результатов экспериментальной работы и сравнение полученных показателей с санитарными нормами качества воды

– Выявление основных источников поступления в воду загрязняющих веществ, а также объектов потенциально опасных для экологии

– Формирование выводов, разработка рекомендаций и ознакомление с ними официальных организаций

Отбор проб: для количественного анализа использовалась вода объемом 1,5л в специальной стеклянной банке, далее вода упаривалась да 150мл, добавлялась кислота, в дальнейшем шла обработка пробы.

Обработка проб : Были использованы методы определения показателей качества воды (органометрические свойства, кислотность, минеральный состав, наличие хлоридов, нитратов, фосфатов)предложенные в руководствах по химическому анализу воды. Определение концентраций основных загрязняющих веществ (соединений железа, меди, свинца, кальция, цинка) осуществлялась в школьной химической лаборатории, а исследования, требующие применения точных аналитических приборов, – в аналитической лаборатории АО “Казцинк” на атомно-эмиссионном спектрометре “Ciros” фирмы “SPECTRO” (см. приложение А)

I. Основная часть

1.1 Влияние различных примесей на качество питьевой воды.

В Усть-Каменогорске по трубопроводам перемещается более 5 млрд. т (кубометров) воды и стоков. Суммарная протяженность подземных трубопроводов более 33 тыс. км.,:71% которых стальные, 27%- из чугуна, более 1%- из железобетона и всего 120 км или 0,2% – из полимерных материалов. Конечно, вода проходит на городских водоочистных сооружениях серьезную многоступенчатую обработку, но в повседневной жизни мы часто сталкиваемся с эффектом ее “вторичного заражения”. Водопроводные коммуникации в большинстве случаев уже давно исчерпали свой ресурс, и, соответственно, даже очищенная вода, протекая по многим километрам старых, ржавых и гнилых труб, насыщается ржавчиной, частичками грязи, различной органикой и другими вредными примесями. Такая вода не пригодна для питья и к тому же прибавляет забот в хозяйстве – ломаются бытовые приборы, выходят из строя смесители, на самой сантехнике появляются отвратительные темные разводы, которые отмываются с трудом. Изношенные трубопроводы влияют на здоровье граждан. Вода является составной частью каждой клетки человеческого тела и, как установили ученые, влияет на структуру ДНК. Если организм в течении длительного времени потребляет воду, содержащую ряд вредных веществ в количествах, превышающих минимально допустимые, то их отрицательное влияние отражается не только на здоровье нынешнего поколения, но и на воспроизводстве последующих. Внутренние отложения на металлических трубопроводах представляют собой смесь, состоящую из ржавчины, солей тяжелых металлов, карбонатов и целых колоний различных железобактерий в виде налетов от красно-черного до черно-коричневого цвета. Они живут и размножаются, питаясь оксидами железа и элементами, содержащимися в протекающей воде.

ГОСТ норма по СанПину Таблица №1

Тип примесей; санитарно-гигиенические и медицинские последствияНорма по СанПину (мг/л)Тип и назначение фильтра
Посторонние примеси Потребление человеком вредных посторонних примесей недопустимо. Вода непригодна для приготовления пищи и хозяйственно-бытовых нуждМутность – не более 1,5 мг/л Цветность – не более 20 градусовФильтр-осветлитель Удаление из воды суспензированных частиц, гидрооксидов, металлов, песка, глины, ила, планктона, коллоидных образований

Fe, Mn Избыток железа вызывает заболевания печени, увеличение риска инфаркта. Снижение репродуктивной функции организма, заболевания костной системы. Появление желтых и рыжих трудноудаляемых пятен на белье и синтетических изделиях.

Железо – не более 0,3 мг/л Марганец – не более 0,1 мг/лФильтр-обезжелезиватель Удаление из воды избытка железа и марганца
Соли жесткости и тяжелых металлов Вода не пригодна для хозяйственно-бытовых нужд, сильное образование накипи, чрезмерный расход мыла, стирального порошка. Плохое разваривание мяса и овощей. Тяжелые металлы способствуют заболеваниям нервной системы и почек. Повышается риск заболевания раком.Общая жесткость не более 7 мг экв/л Ртуть – не более 0,001 мг/л Свинец – не более 0,1 мг/лФильтр-умягчитель Удаление из воды солей жесткости: кальция, магния, ртути, свинца и др. тяжелых металлов
Cu, Zn и т. д. Медь – раздражение желудка, цирроз печени. Цинк – вяжущий вкус воды, угнетает окислительные процессы в организме, вызывает анемию. Мышьяк – токсичное вещество, канцероген, провоцирует рак кожи. Недостаток фтора приводит к кариесу зубов. Избыток фтора – к флюорозу зубов. Нитриты и нитраты повышают риск рака желудка.Медь – не более 1 мг/л Цинк – не более 5,0 мг/л Мышьяк – не более 0,05 мг/л Фтор – в пределах 0,7-1,5 мг/л Нитраты – не более 15 мг/лФильтр ионитовый Очистка воды от меди, цинка, молибдена, мышьяка, нитратов, фтора
Нефтепродукты, пестициды и радионуклиды Нефтепродукты – толуол, бензол повышают риск рака крови, являются токсичными для кроветворной системы человека. Придают воде неприятный запах. Пестициды, радионуклиды вызывают рак.Бензол, толуол – не более 0,5 мг/л Фенол – не более 0,001 градусов Стронций-90 – не более 410-10 кю/л Радий-226 – не более 1,210-10 кю/лФильтр угольный тонкой очистки Удаление запаха. Очистка воды от следов хлоры, нефтепродуктов, фенола, поверхностно-активных веществ (ПАВ), хлороорганических пестицидов, частично от мышьяка, свинца, ртути, радионуклидов и др. примесей.
Биологическое заражение Заражение воды патогенными бактериями и вирусами вызывает тяжелые заболевания.Коли-индекс – не более 3УФО (ультрафиолетовая обработка воды) Обеззараживание воды от патогенных бактерий и вирусов использованием бактерицидного излучения.
Хлороорганика приводит к поражению печени, почек, нервной, иммунной и сердечнососудистой систем.Запах – не более 2-х баллов Привкус – не более 2-х баллов Цветность – не более 20 градусовДезодоратор-обеззараживатель Обеззараживание, дезодорация, разрушение хлороорганики и окрашенных коллоидов.
Недостаток фтора и йода Флюс скелета и зубов, остеохондроз.Фтор – в пределах 0,7-1,5 мг/х Йод – по медицинским нормамЙодирование и фторирование воды Обеззараживание при эпидемиях, при базедовой болезни, введение в воду недостающих компонентов, например, фтора.

Существуют требования СанПина 2.1.4 1074-01 о предельно допустимой концентрации элементов в воде.[7] В случаи их нарушения происходят серьезные нарушения в организме человека, данные указаны в таблице.

В третьей графе предлагаются фильтры для снижения концентрации данных веществ в воде.

1.2 Программа по улучшению качества питьевой воды и очистке ее от примесей “Чистая вода”. Методы очистки воды в г. Усть-Каменогорске.

Для улучшения качества питьевой воды правительством была разработана программа “Чистая вода”. [10]

Как было запланировано изначально, программа “Чистая вода” должна была решаться совместными усилиями фирм “Штокхаузен” и “Альдос” (Германия), “Штокхаузен – Евразия”, “Москва – Штокхаузен – Пермь” (Россия), Казахстанско – Германско-Российского Экоцентра, института “Чистой воды” и новых технологий ВКГУ, ВКО акимата, ВКО управление и фонда охраны окружающей среды, предприятия УК “Водоканал”, а также из республиканского бюджета. В программу были включены экологические проекты, направленные на улучшение состояния питьевой воды в регионе, требующие значительных затрат на их реализацию – свыше 4 млрд. тенге. Ежегодно требовалось 1,5 млрд. тенге, однако финансирование осуществлялось лишь на 30%, да и то за счет вышеперечисленных предприятий, а из республиканского бюджета денег не выделялось.

Основным источником финансирования мероприятий природоохранных программ по областному бюджету является ВК областной фонд охраны окружающей среды, доходы которого складываются из 50% сбора платежей, взысканных сумм, штрафов и ущербов за загрязнение окружающей среды и составляют в последние два года около 200 млн. тенге/год. Анализ исполнения сметы расходов фонда за 2007 год показывает следующие распределение по статьям (%): выполнение природоохранных экологических программ – 34, программы “Чистая вода” – 22, ведение экологического мониторинга – 4, организация экологического просвещения – 1, прочие расходы – 39. За счет средств фонда в 2000-2001 гг выполнены мероприятия программы “Чистая вода” по городам и районам области на общую сумму 73 млн. тенге.

По охране водных ресурсов в г. Усть-Каменогорске затраты составили 9,2 млн. тенге, хотя всего было выделено 94 млн. тенге. Объем сброса в бассейн реки Иртыш предприятием “Водоканал” составляет 2200-2600 т/год, а по БПК – 800-1000 т/год. Из этих данных видно, что “Водоканал” является одним из основных источников загрязнения воды из-за недостаточной мощности очистительных сооружений и следовательно, возникает острейшая проблема повышения степени очистки городских (смешанных) сточных вод, которые затем сбрасываются в природные воды. Несмотря на то, что на предприятии ведется внедрение новейших технологий с современным оборудованием по очистке сточных вод, качество нашей питьевой воды оставляет желать лучшего. А все потому, что новейшее оборудование применяется лишь на стадии первичного и вторичного отстаивания воды, что не дает существенного результата из-за сильнейшей загрязненности исходной воды, а для воды улучшенного качества необходимо минимум три стадии очистки воды с использованием новейших технологий. Для улучшения качества питьевой воды необходимы установки и оборудование, разработанные с учетом экологических особенностей нашего региона. К тому же, при обеззараживании воды, для предотвращения различных заболеваний, производится дезинфекция воды различными реагентами, содержащими активный хлор. С целью перестраховки в воду часто подают гораздо большую дозу хлора, чем положено. Однако переизбыток хлора еще более вреден для здоровья, чем недостаток.

Также 24.11.2008- в Казахстане успешно стартовала программа “Питьевая вода” см. приложение Б

1.3 Альтернативные методы очистки воды.

В связи свыше перечисленными факторами особенно актуальны вопросы поиска новых источников водоснабжения, например таких, как атмосферная влага.

Она состоит, главным образом, из водяного пара и его конденсата (капелек воды и кристалликов льда) объемом в 12,9 тысячи кубокилометров. Это в 6 раз больше объема воды во всех реках мира.

Условные запасы атмосферной влаги в Казахстане, по расчетам специалистов, составляют 69 км3 ., что почти в 2 раза превышает расчетные запасы подземных вод.

Интерес к этой идее возрастает, если принять к сведению объективные обстоятельства:

Дефицит традиционных водоисточников и неравномерность их распределения по территории области:

– Возрастающая загрязненность естественных водоемов

– Неудовлетворительное техническое состояние систем водоснабжения из-за высокой степени износа (70%):

– Экономическая нецелесообразность восстановления прежней системы, основанной на протяженных магистральных грунтовых водоводах

– Ориентация на экономичные локальные водопроводные сети и местные источники.

– Проблемы обеспечения отдаленных и мелких водопотребителей

– Наличие интереса к данному способу получения воды со стороны зарубежных ученых и специалистов

– Относительная простота технической реализации идеи, малая материально – энергоемкость процессов, высокая экологичность.

Наряду с этим, необходимо отметить и некоторые проблемы, а именно: относительно невысокая концентрация водяного пара и его конденсата в атмосфере, тесная корреляция между объемом воды и ее физическим состоянием, наличие других водоисточников с конкурирующими характеристиками (необходим сравнительный технико-экономический анализ), а также отсутствие публикаций на эту тему в казахстанском информационном пространстве.

В основе извлечения воды из атмосферы лежат простые физические процессы. Например, использование разности температур воздуха в дневное и ночное время, над поверхностью земли и в ее толще (до глубины 6м.), а также применение процессов адсорбции – десорбции с помощью специально подобранных материалов, охлаждение водосодержащей среды ниже температуры росы с последующим нагревом естественным способом, либо с помощью подвода энергии и организации сбора воды и т. д. [11]

Применяемые при этом технические устройства достаточно разнообразны по конструкции, степени автоматизации и адаптации к условиям среды.

Значительные объемы патентной информации вселяют надежду, что эта тема получит продолжение в дальнейшем.

Другим альтернативным методом очистки воды является применение обратноосмотических установок. Нанофильтрация и обратный осмос – передовые технологии очистки воды, основанные на избирательном проникновении молекул и гидратированных ионов через поры полупроницаемых мембран. Размер пор определяет степень очистки (селективность) от растворенных в воде примесей. Степень задержания солей может достигать 99,6%. Обратный осмос по качеству получаемой воды может быть сравнен с технологиями ионного обмена, электродиализа, дистилляции. По степени промышленного освоения с обратноосмотическими установками могут конкурировать только установки ионного обмена. Сегодня в мире происходит постепенное вытеснение ионообменных установок более совершенными установками, использующими технологию обратного осмоса.

Преимущества обратного осмоса по сравнению с ионным обменом и дистилляцией:

– снижение расхода реагентов и вредных выбросов в окружающую среду;

– снижение эксплуатационных затрат;

– уменьшение производственных площадей.

Очистка воды методом обратного осмоса происходит на молекулярном уровне и требует повышенного качества исходной воды. Для предупреждения повреждения мембран в некоторых случаях требуется установка надежной системы предварительной очистки исходной воды.

Область применения обратноосмотических установок:

– опреснение морской воды,

– очистка сточных вод,

– пищевая и ликероводочная промышленность,

– химическая, металлургическая, фармацевтическая, электронная промышленность.

Типовая гидравлическая схема обратноосмотической установки.

См. приложение В

2. ИСЛЕДОВАНИЕ КАЧЕСТВЕННОГО СОСТАВА ПИТЬЕВОЙ ВОДЫ УСТЬ-КАМЕНОГОРСКА.

Для того, чтобы узнать, какая вода течет из кранов устькаменогорцев, мы провели следующие опыты: [8,9]

Опыт №1 Содержание взвешенных частиц.

Этот показатель качества воды определяем фильтрованием определенного объема воды через бумажный фильтр и последующим высушиванием осадка на фильтре в сушильном шкафу до постоянной массы.

Для анализа берем 50 мл. воды. Фильтр перед работой взвешивают. После фильтрования осадок с фильтром высушивают до постоянной массы при 105С, охлаждают в эксикаторе и взвешивают. Весы должны обладать высокой чувствительностью, лучше использовать аналитические весы.

Содержание взвешенных веществ в мг/литр в испытуемой воде определяют по формуле

(m1 – m2 )*1000/V, где m2- масса бумажного фильтра с осадком взвешенных частиц, г; m1 – масса бумажного фильтра до опыта, г; V – объем воды для анализа, л; ПДК=10 мг/л.

Для анализа мы взяли воду с водозаборов ульбинского, октябрьского районов, КШТ. Взвешиваем фильтры:

КШТ m1 =0.54мг

Ульбинский район m1 =0.51мг

Октябрьский район m1 =0.50мг, затем пропустили через фильтр воду, высушили... их и получили следующие результаты:

КШТ m2 =0.50 мг

Ульбинский район m2 = 0.50мг

Октябрьский район m2 =0,49мг

ВЫВОД: содержание взвешенных частиц Ульбинского района, КШТ, Октябрьского района – соответствуют норме. Превышение допустимой концентрации влияет на сердечно-сосудистую систему и опорно-двигательную систему.

Опыт №2 Цвет (окраска)

При загрязнении водоема стоками промышленных предприятий вода может иметь окраску, не свойственную цветности природных вод. Для источников хозяйственно-питьевого водоснабжения окраска не должна обнаруживаться в столбике высотой 20см, для водоемов культурно-бытового назначения 10см.

Диагностика цвета – один из показателей состояния водоема. Для определения цветности воды нужны:

1)стеклянный сосуд

2)лист белой бумаги

В сосуд набирают воду и на белом фоне бумаги определяют цвет воды (голубой, зеленый, серый, желтый, коричневый) – показатель определенного вида загрязнения.

Для анализа мы взяли воду с водозаборов Ульбинского района, Октябрьского района и КШТ

Результаты:

КШТ – желтоватый цвет

Ульбинский район – обычный прозрачный

Октябрьский район – зеленовато-серый

ВЫВОД: незначительное изменение окраски не оказывает существенного влияния на организм человека, если это не вызвано наличием в воде растворенных частиц органических соединений.

Опыт № 3 Прозрачность

Прозрачность воды зависит от нескольких факторов: количества взвешенных частиц ила, глины, песка, микроорганизмом, содержания химических соединений.

Для определения прозрачности воды используют прозрачный цилиндр на расстоянии 4 см от его дна шрифт, высота букв которого 2 мм, а толщина линии букв – 0,5мм, и сливают воду до тех пор, пока сверху через слои воды не будет виден этот шрифт, измеряют высоту столба оставшейся воды линейкой и выражают степень прозрачности в сантиметрах. При прозрачности воды менее 3см водопотребление ограничивается. Уменьшение прозрачности природных вод свидетельствует об их загрязнении.

Результат: Ульбинский район – 6см, Октябрьский район -5,6см, КШТ -4см,

ВЫВОД: прозрачность воды КШТ указывает на низкое качество питьевой воды. Прозрачность воды с водозаборов Октябрьского района и Ульбинского района соответствует нормативам качества.

Опыт № 4 Запах

Запах воды обусловлен наличием в ней пахнущих веществ, которые попадают в нее естественным путем и со сточными водами. Запах воды водоемов, обнаруживаемый непосредственно в воде или (водоемов хозяйственно-питьевого назначения) после ее хлорирования, не должен превышать 2 баллов. Определение основано на органолептическом исследовании характера и интенсивности запахов воды при 20 и 60 С. Характер, и интенсивность запаха определяют по предлагаемой методике (табл.2,3).

Таблица №2

Характер и род запаха воды естественного происхождения

АроматическийОгуречный, цветочный
БолотныйИлистый, тинистый
ГнилостныйФекальный, сточной воды
ДревесныйМокрой щепы, древесной коры
ЗемлистыйПрелый, свежевспаханной земли, глинистый
ПлесневыйЗатхлый, застойный
РыбныйРыбы, рыбьего жира
СероводородныйТухлых яиц
ТравянистыйСкошенной травы, сена
НеопределенныйНе подходящий под предыдущие определения

Таблица №3

Интенсивность запаха воды.

БаллИнтенсивность запахаКачественная характеристика
0Отсутствие ощутимого запаха
1Очень слабаяЗапах, не поддающийся обнаружению потребителем, но обнаруживаемый в лаборатории опытным исследователем
2СлабаяЗапах, не привлекающей внимания потребителя, но обнаруживаемый, если на него обратить внимание
3ЗаметнаяЗапах, легко обнаруживаемый и дающий повод относится к воде с неодобрением
4ОтчетливаяЗапах, обращающий на себя внимание и делающий воду непригодной для питья
5Очень сильнаяЗапах, настолько сильный, что вода становится непригодной для питья

Запахи искусственного происхождения (от промышленных выбросов, для питьевой воды – от обработки воды реагентами на водопроводных сооружениях и т. п.) называются по соответствующим веществам: хлорфенольный, камфорный, бензиновый, хлорный и т. п.

Интенсивность запаха также оценивается при 20 и 60 С по 5- балльной системе согласно таблице.

Запах воды следует определять в помещении, в котором воздух не имеет постороннего запаха. Желательно, чтобы характер и интенсивность запаха отмечали несколько исследователей.

ВЫВОД: Вода Октябрьского р-на имеет слабый, едва ощутимый неприятный запах, вода Ульбинского р-на не имеет ощутимого запаха, вода КШТ имеет слабый, неопределенный запах.

Определение качества воды методами химического анализа.

Опыт № 5 Водородный показатель (рН)

Питьевая вода должна иметь нейтральную реакцию (рН около 7). Значение рН воды водоемов хозяйственного, питьевого, культурно-бытового назначения регламентируется в пределах 6,5 – 8,5.

Оценивать значение рН можно разными способами.

1. Приближенное значение рН определяется следующим образом.

В пробирку наливают 5 мл исследуемой воды, 0,1мл универсального индикатора, перемешивают и по окраске раствора определяют рН:

– Розово – оранжевая – рН около 5

– Светло – желтая – 6

– Зеленовато – голубая – 8

2. Можно определить рН с помощью универсальной индикаторной бумаги, сравнить ее окраску со шкалой.

3.Наиболее точно значение рН можно определить на рН – метре или шкале набора Алямовского.

По результатам нашего исследования:

Октябрьский район – рН около 6 – кислая

Ульбинский район – рН около 5- кислая

КШТ рН – около 5- кислая

ВЫВОД: Повышенная кислотность в воде Ульбинского, Октябрьского районов и КШТ свидетельствует о плохом качестве исследуемой воды. Такая вода отрицательно влияет на организм человека, и может вызвать заболевания желудочно-кишечного тракта.

Опыт № 6 Определение хлоридов и сульфатов

Концентрация хлоридов в водоемах – источниках водоснабжения допускается до 350 мг/л.

Много хлоридов попадает в водоемы со сбросами хозяйственно – бытовых и промышленных сточных вод. Этот показатель весьма важен при оценке санитарного состояния водоема. Таблица №4

Осадок или помутнениеКонцентрация хлоридов, мг/л
Опалесценция или слабая муть1-10
Сильная муть10-50
Образуются хлопья, но осаждаются не сразу50-100
Белый объемистый осадокБолее 100

Качественное определение хлоридов с приближенной количественной оценкой проводят следующим образом. В пробирку отбирают 5мл исследуемой воды и добавляют 3 капли 10 %-ного раствора нитрата серебра. Приблизительное содержание хлоридов определяют по осадку или помутнению (см таблицу).

Определение содержания хлоридов

Содержание хлоридов (х) в мг/л вычисляют по формуле

Х=(1,773*V*1000)/100

Где, 1,773 – масса хлорид ионов (мг), эквивалентная 1 мл точно 0,05 н. раствора нитрата серебра; V-объем раствора нитрата серебра, затраченного на титрование, мл.

Для расчета по опыту мы взяли 8мг/л (нитрат серебра)

Х=(1,773*8*1000)/100=141,84мг/л

Вывод: в воде КШТ – сильная муть, около 10-50 мг/л хлоридов; Ульбинский и Октябрьский районы – слабая муть, около 1-10мг/л;

Качественное определение сульфатов с приближенной количественной оценкой проводят так:

В пробирку вносят 10мл исследуемой воды, 0.5 мл соляной кислоты (1:5) и 2мл 5%-ного раствора хлорида бария, перемешивают. По характеру выпавшего осадка определяют ориентировочное содержание сульфатов: при отсутствии мути концентрация сульфат ионов менее 5мг/л; при слабой мути, появляющейся не сразу, а через несколько минут – 5-10мг/л; при слабой мути, появляющейся сразу, после добавления хлорида бария, -10-100мг/л; сильная, быстро оседающая муть свидетельствует о достаточно высоком содержании сульфат – ионов (более 100мг/л).

КШТ – ярко выраженная муть, 10-100мг/л; Ульбинский р-н – слабая муть, 5-10мг/л; Октябрьский район – слабая муть, образующаяся сразу после добавления хлорида бария,10-100мг/л;

ВЫВОД: Значительное превышение ПДК обнаружено в исследуемой воде Октябрьского района и КШТ, что может стать причиной некоторых сердечно-сосудистых заболеваний.

Опыт №7 Обнаружение фосфат – ионов.

Реагент: молибдат аммония (12,5г (NH4 )2 МоО4 растворить в дистиллированной Н2 О и профильтровать, объем довести дистиллированной водой до 1л); азотная кислота (1:2); хлорид олова.

К 5мл подкисленной пробы воды прибавляют 2,0мл молибдата аммония и по каплям(6капель) вводят раствор хлорида олова. Окраска раствора синяя при концентрации фосфат ионов более 10мг/л, голубая более 1мг/л, бледно-голубая – более 0,01мг/л.

ВЫВОД: В воде Ульбинского района и КШТ окраска раствора бледно-голубая, содержание фосфат – ионов – более 0,01мг/л, Октябрьский район окраска голубая – более 1 мг/л.

Опыт №8 Обнаружение нитрат – ионов.

Реагент: дифениламин (1г (С6 Н5 )2 NH растворить в 100мл H2 SO4 )

К 1мл пробы воды по каплям вводят реагент. Бледно – голубое окрашивание наблюдается при концентрации нитрат – ионов более 0,001мг/л, голубое – более 1мг/л, синее – более 100мг/л.

ВЫВОД: концентрация нитрат – ионов со всех трех водозаборов одинаковая, более 0,001мг/л

Качественное и количественное обнаружение катионов тяжелых металлов

Методы анализа: качественный анализ, включающий в себя дробный метод, разработанный Н. А Танаевым. Он открыл ряд новых, оригинальных реакций, позволяющих обнаруживать в растворе какой-либо определенный катион в присутствии большого числа других катионов, не прибегая к их предварительному осаждению. Количественный анализ, включающий атомно-эмиссионный метод, основанный на излучении атомных спектров вещества, возбуждаемых в горячих источниках света, а также сравнение и обобщение информации с литературными источниками.

Опыт №9 Обнаружение ионов свинца ( Pb 2+ )

Реагент: хромат калия (10г К2 СrO4 растворить в 90мл H2 O)

В пробирку помещают 5мл пробы воды, прибавляют 1мл раствора реагента. Если выпадает желтый осадок, содержание катионов свинца более 100мг/л; если наблюдается помутнение раствора, концентрация катионов свинца более 20 мл/л, а при опалесценции – 0,1 мг/л [6, c97-98]

ВЫВОД: Самое высокое содержание свинца в воде КШТ более 100мг/л осадок желтого цвета; октябрьский район-помутнение, более 20мг/л; Ульбинский район – опалесценция, 0,1мг/л.

Опыт №10 Обнаружение ионов кальция (Са2+ )

Реагенты: оксалат аммония (17,5г (NH4 )2 С2 О4 растворить в воде и довести до 1л); уксусная кислота (120мл ледяной СН3 СООН довести дистиллированной водой до 1л).

В 5 мл пробы воды прибавляют 3мл уксусной кислоты, затем вводят 8мл реагента. Если выпадает белый осадок, то концентрация ионов кальция 100мг/л; если раствор мутный – концентрация ионов кальция более 1мг/л, при опалесценции – более0,01мг/л.[6, с128-129]

ВЫВОД: Самое высокое содержание ионов кальция в пробе с Октябрьского района 100мг/л, КШТ и Ульбинский район наблюдается помутнение раствора – концентрация ионов более 1мг/л

Опыт №11 Обнаружение ионов железа ( Fe 2+ )

В пробирку помещают 5мл исследуемой пробы воды, добавляют несколько капель K3 [Fe(CN)6 ] красная кровяная соль. Окраска раствора приобретает цвет под названием: турбулинская синь[6, c194-195]

ВЫВОД: Самое высокое содержание ионов железа 2 содержится в воде с КШТ, т. к по яркости окраски на первом месте – вода с КШТ, на втором – Ульбинский район, на третьем – Октябрьский район.

Опыт №12 Обнаружение ионов железа ( Fe 3+)

В пробирку помещаем 5мл пробы воды, добавляют несколько капель К4 [Fe(CN)6 ] желтая кровяная соль. Окраска раствора приобретает цвет под названием: берлинская лазурь.

ВЫВОД: Самое большое содержание ионов железа3 в воде с Октябрьского района – яркий, насыщенный цвет, в остальных двух пробах окрас менее насыщенный.

Получив результаты эксперимента, мы обратились к альтернативе, т. е возможности замены водопроводной воды талой.

2.2 Структура воды

Молекула воды имеет угловое строение;[1]входящие в ее состав ядра образуют равнобедренный треугольник, в основании которого находятся два протона, а в вершине – ядро атома кислорода, межьядерные расстояния О-Н близки к 0,1 нм, расстояние между ядрами атомов водорода равно 0,15 нм. Из восьми электронов, составляющих внешний электронный слой атома кислорода в молекуле воды две электронные пары образуют ковалентные связи О-Н, а остальные четыре электрона представляют собой две неподеленных электронных пары.

Атом кислорода в молекуле воды находится в состоянии sp2-гибридизации. Поэтому валентный угол НОН (104,3°) близок к тетраэдрическому (109,5°). Электроны, образующие связи О-Н, смещены к более электроотрицательному атому кислорода. В результате атомы водорода приобретают эффективные положительные заряды, поскольку на них создаются два положительных полюса. Центры отрицательных зарядов неподеленных электронных пар атома кислорода, находящиеся на гибридных – орбиталях, смещены относительно ядра атома и в свою очередь создают два отрицательных полюса.

Молекулярная масса парообразной воды равна 18 ед. Но молекулярная масса жидкой воды, определяемая путем изучения ее растворов в других растворителях, оказывается более, высокой. Это происходит из-за того, что в жидкой воде происходит ассоциация отдельных молекул воды в более сложные агрегаты (кластеры). Такой вывод подтверждается и аномально высокими значениями температур плавления и кипения воды. Ассоциация молекул воды вызвана образованием между ними водородных связей. По своей структуре вода представляет собой иерархию правильных объемных структур, в основе которых лежит кристаллоподобные образования, состоящие из 57 молекул и взаимодействующие друг с другом за счет свободных водородных связей. Это приводит к появлению структур второго порядка в виде шестигранников, состоящих из 912 молекул воды.

Свойства кластеров зависят от того, в каком соотношении выступают на поверхность кислород и водород. Конфигурация элементов воды реагирует на любое внешнее воздействие и примеси, что объясняет чрезвычайно лабильный характер их взаимодействия. В обычной воде совокупность отдельных молекул воды и случайных ассоциатов составляет 60% (деструктурированная вода), а 40% – это кластеры (структурированная вода).

В твердой воде (лед) атом кислорода каждой молекулы участвует в образовании двух водородных связей с соседними молекулами воды. Образование водородных связей приводит к такому расположению молекул воды, при котором они соприкасаются друг с другом своими разноименными полюсами. Молекулы образуют слои, причем каждая из них связана с тремя молекулами, принадлежащими к тому же слою, и с одной – из соседнего слоя. Структура льда принадлежит к наименее плотным структурам, в ней существуют пустоты, размеры которых несколько превышают размеры молекулы.

Природный лед обычно значительно чище, чем вода, так как при кристаллизации воды в первую очередь в решетку встают молекулы воды. Лед может содержать механические примеси – твердые частицы, капельки концентрированных растворов, пузырьки газа. Наличием кристалликов соли и капелек рассола объясняется солоноватость морского льда. При таянии льда его структура разрушается. Но и в жидкой воде сохраняются водородные связи между молекулами: образуются ассоциаты – обломки структур льда, – состоящих из большего или меньшего числа молекул воды. Однако в отличит от льда каждый ассоциат существует очень короткое время: постоянно происходит разрушение одних и образование других агрегатов. В пустотах таких “ледяных” агрегатов могут размещаться одиночные молекулы воды; при этом упаковка молекул воды становится более плотной. Именно поэтому при таянии льда объем, занимаемый водой, уменьшается, а ее плотность возрастает.

Поэтому талая вода отличается от обычной изобилием многомолекулярных регулярных структур (кластеров), в которых в течение некоторого времени сохраняются рыхлые льдоподобные структуры. После таяния всего льда температура воды повышается и водородные связи внутри кластеров перестают противостоять возрастающим тепловым колебаниям атомов.

Существуют предположения о том, что талая вода обладает некоторой особой внутренней динамикой и особым “биологическим воздействием”, которые могут сохраняться в течение длительного времени (см. например В. Белянин, Е. Романова, Жизнь, молекула воды и золотая пропорция, “Наука и жизнь”, номер 10, 2004).Считается, что талая вода после таянья льда имеет определенную структурированную кластерную структуру. Попадая в организм, талая вода положительно воздействует на водный обмен человека, способствуя очищению организма.

Позже ученые нашли объяснение феномену талой воды – в ней, по сравнению с обычной, гораздо меньше примесей, включая изотопных молекул, где атом водорода заменен его тяжелым изотопом – дейтерием. Талая вода считается хорошим народным средством для повышения физической активности организма, особенно после зимней спячки. Сельские жители заметили, что животные пьют эту воду; как только на полях начинают сходить снега, домашний скот пьет из лужиц талой воды. На полях, где скапливаются талые воды, урожай богаче.

Талая вода отличается от обычной и тем, что в ней после замораживания и последующего оттаивания образуется много центров кристаллизации.

Было установлено, что нагревание свежей талой воды выше +37°С ведет кутрате биологической активности, которая наиболее характерна длятакой воды. Сохранение талой воды при температуре +20-22°С также сопровождается постепенным снижением ее биологической активности: через 16-18 часов она снижается на 50 процентов.

Свежая талая вода способствует ускорению восстановительных процессов, повышает сопротивляемость организма инфекциям, снижает чувствительность слизистой оболочки, нормализует тонус бронхиальной мускулатуры. У детей при лечении воспалений легких ингаляциями свежей талой водой в восстановительный период на 2-7 дней раньше прекращается кашель, исчезают сухие и влажные хрипы, происходит нормализация показателей крови, температуры, функций внешнего дыхания, то есть существенно ускоряется процесс выздоровления. При этом значительно снижается число осложнении и частота перехода острых форм заболеваний в хронические.

Кроме того, талая вода придает человеку много сил, бодрости, энергии. Неоднократно отмечалось, что люди, пьющие талую воду, становятся не только более здоровыми, но и более работоспособными, повышается мозговая активность, производительность труда, способность легко решать трудные задачи. Особенно подтверждает высокую энергетику талой воды продолжительность человеческого сна, которое у отдельных людей сокращается иногда всего – внимание – до 4 часов.

Употребление свежей талой воды целесообразно для поддержания оптимальных условий жизненных процессов в условиях перегревания, высоких физических нагрузок.

2.3 Приготовление талой воды.

Существует 6 способов приготовления талой воды (см. приложение П), мы воспользовались 6 способом и исследовали ее качественный состав.

6. Для большего эффекта можно воспользоваться двойным очищением.

Сначала дать воде отстояться, затем заморозить. Дождаться, когда образуется тонкий первый слой льда. Этот лед удаляют – в нем содержатся некоторые вредные быстрозамерзающие соединения. Затем повторно замораживают воду – уже до половины объема и удаляют не замерзшую фракцию воды. Получится очень чистая и целебная вода [5]

2.4 Качественный состав талой воды

Опыт №2 (окраска)

ВЫВОД: прозрачная

Опыт №3 (прозрачность)

ВЫВОД: 6 см, соответствует нормам качества

Опыт №4 (запах)

ВЫВОД: не имеет ощутимого запаха

Опыт №5 (водородный показатель рН)

РН=7, среда нормальная, соответствует нормам качества

Опыт № 6 (определение хлоридов и сульфатов)

ВЫВОД: Талая вода – прозрачна, в ней нет хлоридов, сульфатов – менее 5 мг/л

Опыт №7 (определение иона свинца)

ВЫВОД: Наблюдается слабое помутнение, концентрация ионов свинца – 0,1мг/л

Опыт №8 (определение иона кальция)

ВЫВОД: Опалесценция – более 0,01мг/л

Опыт №9 (определение ионов железа 2+)

ВЫВОД: в талой воде количество ионов железа самое малое из всех проб.

Опыт №10 (определение ионов железа3+)

Опыт №11 (определение фосфат – ионов)

ВЫВОД: Содержание фосфат – ионов более 10мг/л, окраска синего цвета

Опыт № 12 (определение нитрат ионов)

ВЫВОД: Содержание нитратов везде одинаково 0,001мг/л

Заключение.

Таким образом, в данной работе:

– Был исследован качественный и количественный состав питьевой воды с трех водозаборов г. Усть – Каменогорска. Самое высокое содержание хлоридов и катионов свинца в воде с КШТ, самое высокое содержание катионов кальция в воде Октябрьского района, самое высокое содержание катионов железа в воде Ульбинского района и т. д.

– Установлены причины ее загрязнения.

– Показаны альтернативные способы очистки воды.

– Указана альтернатива питьевой воды на основе ее структуры.

– Исследован качественный состав талой воды, в сравнении с питьевой

Водой.

– Показаны возможности использования талой воды в животноводстве,

Медицине, растениеводстве.

Выполнив данную работу, мы достигли поставленной цели и надеемся, что жители нашего города отнесутся серьезно к проблеме качества питьевой воды, и прежде чем пить воду из крана, подумают, как это скажется на их здоровье в дальнейшем. Пока не приняты меры по улучшению качества воды, необходимо перед употреблением подвергать воду термической обработке или фильтрации.

Новизна нашей работы заключается в следующем: данные по состоянию питьевой воды не могут быть постоянными, картина меняется в зависимости от изменения ситуации, поэтому данные, в нашей работе не совпали с официальными исследованиями. Кроме того, исследуя возможности улучшения качества воды, мы достаточно глубоко и детально изучили особенности талой воды, способы ее приготовления, результаты влияния на развитие живых организмов и на здоровье наших граждан.

Надеемся, что альтернативные методы очистки и опреснения воды, предложенные в докладе, не останутся без внимания.

Список литературы:

1. Алекин О. А. Основы гидрохимии.-Л.:Гидрохимиздат,1953. [1]

2. Аранская О. С.,Бурая И. В. Проектная деятельность школьников в процессе обучения химии.-М.:Вентана-Граф,2005. [2]

3. Белянин В. С., Романова Е. П. Новый взгляд.-//Наука и жизнь.-2003.-№6. [3]

4. Кирьянова А. В., Лебедева И. А. Из опыта работы школьной лаборатории.- //Химия в школе.-2009.-№2. [4]

5. Кузьменюк Н. М., Стрельцов Е. А., Кулачев А. И. Экология на уроках химии.-1996. [5]

6. Логинов Н. Я., Воскресенский А. Г. Аналитическая химия. [6]

7. Нормативные данные по предельно допустимым уровням загрязнения вредными веществами, объектов окружающей среды.- Справочный материал. [7]

8. Турлакова Е. В. Определение показателей качества воды. // Химия в школе.- 2001. – №7. [8]

9. Харьковская Н. Л., Асеева З. Г. Анализ воды. // Химия в школе. – 1997. – №3 (апрель – май). [9]

Интернет ресурсы:

10. http://O vode. ru / [10]

11. http://inauka. ru / [11]

12. http://nauka. relis. ru/ [12]


Зараз ви читаєте: Исследование воды качественный и количественный анализ