Конечные разности. Погрешности

Реферат

” Конечные разности. Погрешности”

1. Погрешности

1.1 Действительные и конечно-разрядные числа

Представление действительных чисел в вычислительных машинах с фиксированной разрядной сеткой влечет появление инструментальной погрешности в обрабатываемых числах и результатах арифметических действий.

Принятое при вводе преобразование исходных действительных чисел в нормализованную экспоненциальную форму и размещение их в ограниченной разрядной сетке ЭВМ с порядком и дробной частью (мантиссой) в общем случае вносит в этот операнд относительную инструментальную погрешность, величина которой не превышает

Где n – число значащих дробных двоичных разрядов, отведенных для хранения мантиссы.

Приближенное конечно-разрядное число a – это действительное число, занимающее заданное количество разрядов и округленное до числа с ближайшим значением достоверного младшего разряда. Приближенные действительные числа имеют абсолютную и относительную погрешности. Эти погрешности при анализе распространения ошибки при вычислениях приписываются к приближенному числу результата и связываются между собой следующим образом:

Если число a = 5,3812 имеет все разряды достоверные, то его абсолютная погрешность принимается равной половине единицы младшего разряда, т. е. =0.00005, а относительная погрешность, округляемая обычно до одного-двух значащих достоверных разрядов, будет

Всякие арифметические операции с операндами, представленными в системе с плавающей точкой, в общем случае вносят в результат аналогичную относительную инструментальную погрешность:

Где fl(-) – указание на арифметику с плавающей точкой,

– арифметическая операция из множества .

Значение результата, равное нулю принудительно устанавливается в машинах при операциях умножения с двумя операндами, приводящее к исчезновению порядка (отрицательный порядок по модулю не умещается на отведенном для него количестве разрядов).

Несколько иначе обстоит дело при вычитании чисел с плавающей точкой и одинаковым порядком:

,

.

Из последнего можно заключить, что для операции вычитания относительная погрешность численно определяется количеством значащих разрядов в результате, которое из-за выполнения нормализации не может быть меньше . Т. е. погрешность приближается к 100% последовательно. Это предупреждение адресуется составителям вычислительных алгоритмов, которым необходимо выискивать эквивалентные формулы с контролем величины операндов, в определенных ситуациях можно использовать программный переход к вычислениям с удвоенной точностью.

При выполнении аддитивных операций с приближенными операндами погрешность результата равна сумме абсолютных погрешностей всех чисел, участвовавших в операции. Выполнение мультипликативных операций вносит в результат относительную погрешность, равную сумме относительных погрешностей каждого из операндов.

1.2 Погрешность алгоритмов

Инструментальные погрешности арифметических машинных команд из-за различия и непредсказуемости величины ошибки результата нарушают дистрибутивный, ассоциативный и коммутативный законы арифметики. Каждый же программист, составляя программу, уже на уровне интуиции пользуется ими, как незыблемыми. Отсюда различие в точности тех или иных вычислительных алгоритмов и трудно уловимые ошибки.

Проследить накопление вычислительной погрешности алгоритма для операндов, которые имеют производные, удобно, если результат r каждой двуместной арифметической операции умножать на множитель с последующим разложением результирующей функции алгоритма по степеням этого множителя или этих множителей, если в группах операторов отличаются по величине. Например, для алгоритма вычисления значения полинома третьей степени по схеме Горнера с псевдокодом:

P:=0; j:=3;

Repeat

S:=a[j]*x+a [j-1];

P:=P+S*x;

J:=j-1;

Until j=1;

Функция алгоритма будет:

Учитывая, что , последнее выражение дает возможность после раскрытия скобок выделить из суммы и оценить сначала абсолютную погрешность, а по абсолютной погрешности – относительную:

Условные арифметические операторы с проверкой равенства операндов необходимо заменять проверкой вида: .

2. Конечные разности

2.1 Определение конечных разностей

Конечная разность “вперед” для таблично заданной функции в i – той точке определяется выражением: , где функция задана, как функция целочисленного аргумента с единичным шагом по аргументу i.

Для аналитически заданной и протабулированной с постоянным шагом h функции определяющее соотношение имеет вид:

.

Преобразование таблицы функции в функцию целочисленного аргумента осуществляют при помощи линейного соотношения между аргументами x и i : .

Коэффициенты a и b находят из системы уравнений, получаемой в результате подстановки в пределах заданной таблицы вместо x и i сначала начальных значений аргументов , а затем конечных . При этом начало таблицы удобно совместить с началом координат функции с целочисленным аргументом(). Тогда для таблицы с (n+ 1) – й строками:

,

Повторные конечные разности n – го порядка в i – той точке для табличной функции определяются соотношением

.

2.2 Конечно-разностные операторы

Линейность конечно-разностного оператора позволяет ввести конечно-разностный оператор сдвига и многочлены от оператора с целыми коэффициентами, такие, как , где должно рассматриваться как оператор повторной разности k – того порядка.

Действие любого многочлена на функцию g (i ) определяется как

.

Применение оператора сдвига к g (i ) преобразует последнее в g (i +1):

G (i +1) = E g (i ) = (1+) g (i )= g (i ) + G (i ).

Повторное применение оператора сдвига позволяет выразить (i+n ) – е значение ординаты функции g через конечные разности различных порядков:

Где – число сочетаний из n элементов по k ;

– многочлен степени k от целой переменной n (), имеющий k сомножителей. При k=n .

В силу линейности оператора сдвига можно конечно-разностный оператор выразить, как , и определить повторные конечные разности через многочлены от операторов сдвига так .

Последнее позволяет формульно выражать n – ную повторную разность через (n +1) ординату табличной функции, начиная с i – той строки:

Если в выражении для g (i+n ) положить i =0 и вместо подставить их факториальные представления, то после несложных преобразований получится разложение функции целочисленного аргумента по многочленам , которые в литературе называют факториальными:

.

Можно поставить задачу разложения и функции действительной переменной f (x ) по многочленам относительно начала координат (аналогично ряду Маклорена), т. е. . Если последовательно находить конечные разности от левой и правой частей, то, зная, что и , после подстановки x =0 будем получать выражения для коэффициентов разложения . У многочленов k – той степени, , поэтому

.

Такое разложение табличной функции f (x ) в литературе называют интерполяционным многочленом Ньютона для равных интервалов.

2.3 Взаимосвязь операторов разности и дифференцирования

Значение функции на удалении h от некоторой точки можно выразить через значения производных в этой точке, разложив ее в ряд Тейлора:

Где – оператор дифференцирования,

– оператор сдвига, выраженный через оператор p.

H – шаг по оси действительной переменной

Из равенства операторов сдвига, выраженных через p и , можно получить взаимосвязь этих линейных операторов:

,

Оператор дифференцирования порядка n, перенесенный в точку, удаленную от текущей, например, на 2 шага вперед представляется так:

.

Выполнив алгебраическое перемножение многочленов с конечно-разностными операторами и ограничившись операторами со степенью не выше n, получим одну из возможных аппроксимаций оператора дифференцирования. Действуя таким сложным конечно-разностным оператором на ординату f (x ), получаем формулу для вычисления n – й производной в точке по значениям ее конечных разностей. Например, для n =2, отбрасывая все повторные разности выше третьего порядка, получим:

.

Если f (x ) является многочленом степени n, то повторные разности (n +1) – го порядка тождественно равны нулю. Приравнивая нулю повторные разности порядков выше n мы фактически аппроксимируем f (x ) многочленом степени n.

В предыдущем выражении, выразив повторные разности через ординаты табличной функции, получим еще один вид формулы для вычисления значения производной:

.

Для целочисленного аргумента табличной функции запись выражения можно упростить, если положить h =1 и

2.4 Исчисление конечных разностей

Разложение функций в ряд по факториальным многочленам (интерполяционным многочленам Ньютона в частности) дает возможность получать формулы суммирования функциональных рядов в виде аналитических выражений, зависящих от пределов. Эта возможность открывается в связи с тем, что суммировать конечные разности не представляет большой сложности, а выразить конечную разность от факториального многочлена через факториальный же многочлен можно, воспользовавшись соотношением:

Факториальные многочлены по отношению к исчислению разностей ведут себя так же, как степенные функции в исчислении производных: дифференцирование тоже понижает степень многочлена на единицу. Это свойство позволяет в факториальном разложении заменить факториальные многочлены своими конечными разностями следующего вида:

Замена хороша тем, что суммирование конечных разностей в заданных пределах мнемонически весьма напоминает вычисление определенного интеграла от функции по ее первообразной:

Если , то

.

Процедуру суммирования функционального ряда продемонстрируем на примере получения суммы квадратов натурального ряда чисел в пределах от a =1 до b =5 (Для проверки: ):

Вторая сумма по переменной n представляет разложение по факториальным многочленам, в которое входят значения конечных разностей 0, 1 и 2-го порядков, вычисленные в начале координат целочисленной переменной, т. е. при x= 0. Они соответственно равны:

,

,

.

После подстановки значений разностей во второй сумме останутся два факториальных полинома: первой и второй степеней:

Если распределить вычисление сумм по слагаемым, то мы перейдем к суммированию конечных разностей от факториальных многочленов:

Литература

1. Бахвалов Н. С., Жидков Н. П., Кобельков Г. М. Численные методы: Учеб. пособие. – М.: Наука, 1987. – 600 с.

2. Воеводин В. В. Численные методы алгебры. Теория и алгорифмы. – М.: Наука, 1966. – 248 с.

3. Воеводин В. В. Вычислительные основы линейной алгебры. – М.: Наука, 1977. – 304 с.

4. Волков Е. А. Численные методы. – М.: Наука, 1987. – 248 с.

5. Калашников В. И. Аналоговые и гибридные вычислительные устройства: Учеб. пособие. – Харьков: НТУ “ХПИ”, 2002. – 196 с.

6. Вержбицкий, В. М. Численные методы. Математический анализ и обыкновенные дифференциальные уравнения. М.: Высш. шк., 2001. 383 с.

7. Волков, Е. А. Численные методы. СПб.: Лань, 2004. 248 с.

8. Мудров, А. Е. Численные методы для ПЭВМ на языках Бейсик, Фортран и Паскаль. Томск: МП “РАСКО”, 1991. 272 с.

9. Шуп, Т. Е. Прикладные численные методы в физике и технике. М.: Высш. шк., 1990. 255 с.

10. Бахвалов, Н. С. Численные методы в задачах и упражнениях / Н. С. Бахвалов, А. В. Лапин, Е. В. Чижонков. М.: Высш. шк., 2000. 192 с.


Зараз ви читаєте: Конечные разности. Погрешности