Модель прогнозирования параметров финансовых рынков и оптимального управления инвестиционными портфелями


МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ПЕРМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

МОДЕЛЬ ПРОГНОЗИРОВАНИЯ ПАРАМЕТРОВ ФИНАНСОВЫХ РЫНКОВ И ОПТИМАЛЬНОГО УПРАВЛЕНИЯ ИНВЕСТИЦИОННЫМ ПОРТФЕЛЕМ.

Выполнил:

Проверил:

Г. Пермь 2000.

Построение математической модели прогнозирования поведения является трудной задачей в связи с сильным влиянием политических и других проблем (выборы, природные катаклизмы, спекуляции крупных участников рынка…).

В основе модели лежит анализ некоторых критериев с последующим выводом о поведении доходности и ценовых показателей. В набор критериев входят различные макро – и микроэкономические показатели, информация с торговых площадок, экспертные оценки специалистов. Процедура прогнозирования состоит из этапов:

1. Подготовка и предварительная фильтрация данных;

2. Аппроксимация искомой зависимости линейной функцией;

3. Моделирование погрешности с помощью линейной сети.

Но для повышения точности модели практикуется нелинейный анализ с использованием многослойной однородной нейронной сети. Этапы проведения нелинейного анализа в системе совпадают со стандартными шагами при работе с нейросетями.

1-й этап. Подготовка выходных данных.

Выходными данными являются zi = yi – pi, где yi – реальное значение прогнозируемой величины на некоторую дату, pi – рассчитанное на эту дату с помощью линейного анализа.

2-й этап. Нормирование входных сигналов.

(1)

Где xij – j-я координата некоторого критерия Xi, M[Xi ] – выборочная оценка среднего квадратичного отклонения.

3-й этап. Выбор функции активации и архитектуры нейронной сети.

Используются функции активации стандартного вида (сигмоидная, ступенчатая), а также следующего вида:

(2)

(3)

(4)

(5)

Архитектура нейронной сети представлена на рисунке:

S1

F1

Вектор

Входных

S

сигналов вектор

выходн.

F1

Sm

Вектор сигналов

Входных

Сигналов

Введены следующие обозначения: Sj – линейные сумматоры; fj – нелинейные функции; используемые для аппроксимации; S – итоговый сумматор.

4-й этап. Выбор алгоритма обучения нейронной сети, основанного на одном из следующих методов: обратного распространения ошибки, градиентного спуска, метода сопряженных градиентов, методе Ньютона, квазиньютоновском. Методы оцениваются по времени, затрачиваемому на обучение и по величине погрешности.

5-й этап. Итоговые вычисления границ прогнозируемого значения:

P=P лин +Рнелин ± Енелин

Где Р – итоговое прогнозируемое значение, Рлин и Рнелин значение линейного и нелинейного анализов. Енелин – погрешность полученная на этапе нелинейного анализа.

Результаты задачи прогнозирования используются в построенной на ее основе задаче оптимального управления инвестиционным портфелем. В основе разработанной задачи управления идея минимизации трансакционных издержек по переводу портфеля в класс оптимальных.

Используемый поход основан на предположениях, что эффективность инвестирования в некий набор активов является реализацией многомерной случайной величины, математическое ожидание которой характеризует доходность ( m={mi }i=1..n, где mi =M[Ri ], i=1..n ) , матрица ковариаций – риск ( V=(Vij ), i, j=1..n, где Vij =M[(Ri – mi )(Rj – mj )],i, j=1..n ) . Описанные параметры (m, V) представляют собой оценку рынка и являются либо прогнозируемой величиной, либо задаются экспертно. Каждому вектору Х, описывающему относительное распределение средств в портфеле, можно поставить в соответствие пару оценок: mx =(m, x), Vx =(Vx, x) . Величина mx представляет собой средневзвешенную доходность портфеля, распределение средств в котором описывается вектором Х величина V х (вариация портфеля [3,5]) является количественной характеристикой риска портфеля х. Введем в рассмотрение оператор Q, действующий из пространства Rn в пространство R2 (критериальная плоскость [3]), который ставит в соответствие вектору х пару чисел ( mx, Vx ) :

Q: Rn-R2 Û ” x Ì Rn, x ® ((m, x),(Vx, x)). (7)

В задаче управления допустимыми считаются только стандартные портфели, т. е. так называемые портфели без коротких позиций. Правда это накладывает на вектор х два ограничения: нормирующее условие (е, х)=1 , где е – единичный вектор размерности n, и условие неотрицательности доли в портфеле, х >=0 . Точки удовлетворяющие этим условиям образуют dв пространствеRn так называемый стандартный (n-1)-мерный симплекс. Обозначим его D.

D ={x Ì Rn ½ (e, x)=1, x ³ 0}

Образом симплекса в критериальной плоскости будет являться замкнутое ограниченное множество оценок допустимых портфелей. Нижняя граница этого множества представляет собой выпуклую вниз кривую, которая характеризует Парето – эффективный с точки зрения критериев выбор инвестора (эффективная граница [3], [5]). Прообразом эффективной границы в пространстве Rn будет эффективное множество портфелей [5]. Обозначим его как y. Данное множество является выпуклым: линейная комбинация эффективных портфелей также представляет собой эффективный портфель [3].

Пусть в некоторый момент времени у нас имеется портфель, распределение средств в котором описывается вектором х. Тогда задачу управления можно сформулировать в следующем виде: найти такой элемент y, принадлежащий y, что r (y, x) . Иными словами, для заданной точки х требуется найти ближайший элемент y, принадлежащий множеству Y. В пространстве Rn справедлива теорема, доказывающая существование и единственность элемента наилучшего приближения х элементами множества Y [6]. Метрика (понятие расстояния) может быть введена следующим образом:

R (x, y)= a S i=1,n sup(yi – xi,0)+ b S i=1..n sup(xi – yi,0) , (9)

Где a >0 – относительная величина издержек при покупке, b >0 – относительная величина издержек при продаже актива.

Литература

1. Сборник статей к 30-ти летию кафедры ЭК. ПГУ.

2. Ивлиев СВ Модель прогнозирования рынка ценных бумаг. 6-я Всероссийская студенческая конференция “Актуальные проблемы экономики России”: Сб. тез. докл. Воронеж, 2000.

3. Ивлиев СВ Модель оптимального управления портфелем ценных бумаг. Там же.



Зараз ви читаєте: Модель прогнозирования параметров финансовых рынков и оптимального управления инвестиционными портфелями