Обзор геолого-геофизической изученности района Уральской сверхглубокой скважины СГ-4


Введение

Урал – общепризнанный мировой эта­лон палеозойских подвижных поясов, выдающаяся рудная провинция мира с классическими месторождениями черных и цветных металлов. Именно здесь, в старейшем горнорудном рай­оне Среднего Урала в пределах запад­ного крыла Тагильского прогиба, яв­ляющегося генотипической эвгеосинклинальной зоной, была заложена Уральская сверхглубокая скважина СГ-4 проектной глубиной 15000 м. Не­маловажное значение при выборе ме­ста заложения имела хорошая геоло­го-геофизическая подготовленность района бурения. Точка заложения СГ-4 находится вблизи пересечения регио­нальных профилей ГСЗ.

Бурение СГ-4 начато 15 июня 1985 г опережающим стволом диаметром 215 мм скважина достигала глубины 4008 м. При этом бурение интервала 34-4008 м осуществлялось с непре­рывным отбором керна, средний выход которого составил 64,2%. С целью пре­одоления возникших в процессе про­ходки опережающего ствола геологиче­ских осложнений (сильное кавернообразование, интенсивное возрастание зе­нитного угла) произведено формирова­ние ствола диаметром 390 мм с после­дующим перекрытием интервала 0- 3942 м обсадной колонной диаметром 426 мм. В 1990 г. на скважине закон­чен монтаж буровой установки Уралмаш-15000, предназначенный для буре­ния до глубины 15 км, и продолжено дальнейшее углубление ствола. На 01.01.1999 г. глубина СГ-4 составила 5401 м.

1 Геологическое строение района заложения скважины СГ-4

Уральская сверхглубокая скважина (СГ-4), расположенная в 5 км западнее г. В. Тура Свердловской области, бурится с целью изучения земной коры в типичной структуре эвгеосинклинального типа развития. Проектная глубина скважины 15 км, бурение было остановлено на глубине 4008 м (для расширения ствола). В настоящее время глубина скважины около 5400 м. Бурение ведется со сплошным отбором керна, выход керна около 64 %.

Район бурения СГ-4 (рис.1) в геолого-структурном отношении отвечает среднеуральскому сегменту Тагило-Магнитогорской мегазоны палеозойского подвижного пояса Урала. С запада и востока она граничит соответственно с Западно-Уральской и Восточно-Уральской мегазонами, имеющими в основании древний кристаллический фундамент, тогда как в Тагило-Магнитогорской мегазоне он неизве­стен. Западной границей последней является Главный шов Урала, представляющий собой систему параллельных надвигов восточного падения, по которой Тагило-Магнитогорская мегазона надвинута на структуры Западно-Уральской мегазоны. Восточная граница Тагило-Магнитогорской мегазоны проходит по надвигу западного падения (рис. 2).

Тагило-Магнитогорская мегазона традиционно рассматривается как эталон структур эвгеосинклинального типа развития. Она сложена преимущественно вулканогенными толщами силура-карбона. Обра­зования, предшествующие им по возрасту, известны в восточнойчасти Западно-Уральской мегазоны. Они представлены метаморфизованными в зеленосланцевой фации вулканогенно-песчано-алеврито-глинистыми толщами верхнего кембрия-ордовика. Вулканическая составляющая в низах разреза соответствует трахибазальтовой формации (колпаковская свита, С3 -O1 ), в верхней части – базаль­товой (выйская свита, 02-3 ).

В составе Тагило-Магнитогорской мегазоны на Среднем Урале выделяются три зоны, различающиеся набором геологических формаций (с запада на восток): Кумбинская, Центрально-Тагильская и Красноуральская.

В крайней западной части Кумбинской зоны развит сложный по составу и строению комплекс эффузивных, субвулканических и гипабиссальных пород, который ранее при обычном стратиграфическом подходе подразделялся на диабазовую и кабанскую свиты, датируемые в интервале S1 l1-2. В первую объединяются породыбазальтового состава, среди которых наряду с лавами широко распространены интрузии в виде пакетов даек и силлов. Во второй, развитой восточнее, с эффузивными и интрузивными базальтами ассоциируют кислые породы, преимущественно в виде экструзий и субвулканических тел. С породами лавовой фации перемежаются песчаники, алевролиты, кремнистые сланцы. Общая мощность стра­тифицированных образований не менее 2000 м. Диабазовая и кабанская свиты отнесены к формации натриевых базаль­тов-риолитов. В поле их распространения располагается Арбатский массив (дунит-клинопироксенит-габбровая и габбро-диорит-плагиогранитовая формации S1 l), отдельные мелкие тела габбро и плагиогранитов размещаются к западу и востоку от него.

Восточнее кабанского комплекса, отделяясь от него разломом, развиты отложения флишоидной толщи (S1 l3 – v21 ) – пара – и ортотуффиты, тефроиды алевролито-псаммитовой, реже псефитовой размерности и кремнисто-глинистые сланцы. Характерна темно-серая до черной окраска тонкообломочных пород, связанная с присутствием рассеянных сульфидов. В составе пирокластики встречаются породы от базальтов до дацитов. Мощность флишоидной толщи около 1000 м. Эта толща согласно перекрывается именновской свитой, в составе которой выделяются две толщи. Нижняя (S1 l1-3 – S1 v22 ) имеет, как и нижележащая, флишоидный облик, но отличается увеличенной долей туфов и тефроидов и их размерности, отсутствием обломков дацитов. Ее мощность около 1500 м. Более молодой является толща с фауной верхнего венлока-лудлова, сложенная тефроидами пре­имущественно псефитовой размерности, иногда с грубой градационной слоистостью, с базальт-андезибазальтовым составом пирокластики. В верхах этой толщи общей мощностью до 2000 м обособляетсяпачка лав ( часто подушечных) того состава.

В полосе распро­странения именновской свиты вы­явлены многочисленные субвулка­нические тела – остатки вулка­нических аппаратов центрального типа, а также интрузии габбро и габбродиоритов (Тагиль­ский комплекс габбро-диорит-гранодиоритовой формации), по составу сходных с вмещающими вулканическими породами. Именновский комплекс полностью отве­чает определению андезит-базаль­товой формации и явился ее петротипом [Карта магматических формаций СССР, 1974].

В Центрально-Тагильской зоне наиболее ранние образования в осевой ее части представлены кар­бонатными отложениями венлока-лудлова, а в западной час­ти – гороблагодатской толщей (S2 ), сложенной преимуществен­но туфоконгломератами, туфопесчаниками, реже туффитами и туфами трахибазальтового со­става, в подчиненном объеме лавами. Мощность толщи 1650 м. Восточнее широкой полосой распространена туринская свита (S2 p-D1 l). Она сложена в основном подушечными лава­ми, гиалокластитами, туфами, тефроидами трахиандезитового, трахитового, реже базальтового и трахиандезибазальтового со­става и в небольшом объеме известняками. Мощность ее до­стигает 2-3 км. С вулканическими породами (выделяемыми в формацию калиевых базальтов-трахитов) ассоциируют комагматичные субвулканиче­ские тела, а также интрузии сиенитов Кушвинского и габбро Волковского массивов. Фунда­ментом туринской свиты являются карбонатные отложения венлока и лудлова, что и дает основание выделять самостоятельную Центрально-Тагильскую структурно-формационную зону. Гороблагодатская толща в нижней части синхронна с именновской свитой, в верхней – с турин­ской и рассматривается как фациальный аналог этих свит, формировавшихся на стыке Кумбинской и Центрально-Тагиль­ской зон.

Разрез Центрально-Тагильской зоны завершается краснотурьинской свитой (D1 p-D2 ef) вулканогенно-обломочных пород андезитового, андезибазальтового, андезидацитового состава, перемежающихся с туффитами, песчаниками, глинистыми сланцами, известняками. Вулканические образования этой свиты соответствуют базальт-андезитовой формации.

В Красноуральской зоне наиболее ранний комплекс – красноуральский, сопоставляемый по возрасту с кабанским. Однако он отличается от последнего более широким набором пород, среди которых преобладают дациты и андезидациты, что дает основание относить его к “непрерыв­ной” базальт-андезит-риолитовой формации. В качестве комагматичного ему рассматривается выделяемый под тем же названием интрузивный комплекс габбро-диорит-плагиогранитовой формации. Предположитель­но более молодой (S1 l3 -v2 ) является толща пород под названием липовской (по горе Липовой, где она хорошо обнажена). Границы ее с окружающими образованиями в плане проходят по разломам. В составе толщи, имеющей мощность до 2,5 км, ассоциируют высокомаг­незиальная бонинитовая серия и нормальная известково-щелочная, представленные преимущественно андезитами и дацитами, причем для первой серии характерны подушечные лавы и гиалокластиты, для второй – вулканогенно-обломочные фации. Более молодые об­разования Красноуральской зоны сопоставляются с именновской и туринской свитами, хотя отличаются от них по составу и возрасту. Завершается разрез краснотурьинской свитой.

Вопросы о соотношениях отдельных зон и геологических тел внутри Тагило-Магнитогорской мегазоны, о возрасте и природе ее фундамента, о глубине залегания базальтового слоя дискус­сионны, что нашло отражение в существовании целого ряда (не менее 9) моделей глубинного строения района бурения СГС-4. В соответствии с приверженностью авторов моделей к одной из двух существующих концепций развития Урала (классической геосинклинальной или мобилистской) все разнообразие моделей можно свести к двум группам. Согласно первой Тагило-Магнитогорская мегазона представляет собой синклинорную структуру с симметричным строением крыльев, заложенную на древнем кристаллическом фундаменте, едином с фундаментом Русской платформы. Тела отдельных вулканических формаций последо­вательно наслаиваются друг на друга, распространяясь на всю ширину мегазоны. Согласно второй группе моделей Тагило-Магнитогорская мегазона имеет сложное чешуйчато-блоковое строение и представляет собой агломерат зон, формировавшихся обособленно на меланократовом фундаменте океанического про­исхождения и сближенных впоследствии тектонически. Почти на половину своей ширины она надвинута на структуры Западно-Уральской мегазоны, под надвигом может находиться клин древнего кристаллического фундамента. Более обоснованный выбор какой-либо из существующих моделей глубинного строения Тагило-Магнито­горской зоны может быть сделан по результатам бурения СГ-4.

2 Цели и задачи СГ-4

Скважина заложена с целью изуче­ния строения земной коры и рудонос­ных комплексов внутриконтинентальных подвижных поясов эвгеосинклинального типа и предусматривает ре­шение следующих задач.

1. Изучение геологического разреза Тагильского прогиба и особенностей его геотектонического развития.

2. Установление состава, строения, возраста и природы фундамента; соотношение образований геосинклиналь­ного комплекса и фундамента; харак­тер и степень его переработки геосин­клинальным процессом.

3. Исследование глубинных процес­сов рудообразования, воссоздание мо­делей формирования типичных для прогиба месторождений и разработка новых методов эффективного прогноза и поисков минерального сырья.

4. Получение информации о физиче­ских свойствах пород на глубине, особенностях флюидного режима и приро­де сейсмических границ; выявление связи гравитационных, геотермических, геоэлектрических и магнитных полей с глубинным строением.

5. Выявление положения и морфоло­гии стратиграфических и других гра­ниц раздела вещественных комплексов и структурных этажей.

Перечисленным не исчерпывается многообразие исследовательских воз­можностей СГ-4, о чем свидетельствуют опыт Кольской и других сверхглубоких скважин, а также ознакомление с зарубежными программами научного бурения. Показателен пример немец­кой программы континентального бу­рения КТВ, в которой делается акцент на физическую и химическую сторону геологических явлений, изуче­ние современного состояния земной коры и современных геологических процессов. Признавая правомочность такого подхода, целевое назначение-СГ-4 можно определить как фундамен­тальные исследования физических в химических условий и процессов в глу­бинных частях земной коры для пони­мания структуры, состава, динамики и эволюции Уральского подвижного поя­са. Обращает внимание более кон­кретное звучание ряда научных задач, таких, как исследование глубин про­никновения и влияния циркулирующих в земной коре растворов на образова­ние месторождений минерального сы­рья, процессы деформации и конвек­ции, а также значение воды для дина­мических процессов, происходящих в. земной коре; изучение интенсивности дегазации и вещественного состава мантии Земли и континентальной ча­сти земной коры и др. Все это с поправкой на уральскую специфику спра­ведливо и для СГ-4.

Необходимо было создать условия для максимальной реализации познавательных возможностей скважины и сопровождающего ее комплекса работ, а именно: обеспечение современного (мирового) уровня исследований на самой скважине; создание адекватной системы комплексных геолого-геофизических исследований в околоскважинном пространстве; привлечение к ис­следованиям, анализу и обобщению результатов наиболее компетентных специалистов; создание при проведе­нии исследований обстановки гласно­сти и широкого сотрудничества.

4 Геологический разрез СГ-4

Исследования керна ствола и района заложения скважины проводится Уральской ГРЭ СГБ НПО “Недра” совместно с организациями соиспол­нителями ПГО “Уралгеология”, КамНИИКИГС, ИГиГ УрО АН СССР, ИГ УрО АН СССР, ВСЕГЕИ, ЦНИГРИ, ИГЕМ, ИМГРЭ, ВНИИгео-информсистем, ПГО “Аэрогеология”, НПО “Союзпромгеофизика” и др.

Вскрытый скважиной разрез пред­ставлен силурийскими вулканогенными и вулканогенно-осадочными образова­ниями, относимыми согласно современ­ной стратиграфической схеме к именновской свите (S1l3-S2ld).

Общее строение разреза, по результатам выполненной детальной документации керна, просмотра шлифов, вулкано-фациальных и геохимических исследований, установлено сле­дующее.

40-430 м – эффузивная толша в основном базальтовых, андезитобазальтовых лав, в инт. 130-252 м – также ферробазальтов и палеоисландитов;

430-3070 м – монотонная толша грубообломочных и агломерато-грубопесчаных туфов основного состава типично именновского облика: никак не обработанный шлаковый и миндалекаменный материал обильнокрупнопорфировых обычно плагиоклаз-двупироксеновых базальтов и андезитобазальтов, нередко со­держит примесь плагиофировых андезитов и калиевых базальтов и образует пласты и их серии мощностью 20-70 м, разделенные прослойками песчаных тефроидов, обычно слабо слоистых; на 1920-1940 м и около 3000 м появляются подводно-морские флишоиды с темными алевропелитами в верхах ритмов;

3070-3468 м – переслаивание туфов плагиофировых андезитов, местами с примесью базальтового материала и того же состава песчаных тефроидных флишоидов; с 3280 м туфы и тефроиды преимущественно более кислые – андезитодацитовые, часто с оби­лием витрокластики в виде обрывков и комочков пемз и перлитов;

3468-5006 м – флишоидное чередование туфов подводных пирокластических потоков однородно риодацитового состава (также с пемзами, перлитами и обилием осколков плагиоклаза), в инт. 3850-4297 м чаше всего повторно перемешенных как подводно-оползневые массы. Сопровождают их резко подчинен­ные по объемам более мелкопесчаные в разной степени отсорти­рованные флишоидные тефроиды того же состава и темные силициты верхов ритмов, содержащие конодонты граничных слоев лланловери и венлокского ярусов ран­него силура;

5006-5070 м – пачка темных зеленовато-серых силицитов, местами с обильными остатками радиолярий, в верхней половине – с прослойками кислых туфов и тефроидов;

5070-5401 м – кабанский комплекс, представленный в инт. 5072-5076 м темными туфопесчаниками с витрокластикой ос­ новного состава, переходящими вверху в алевропелиты и красные яшмоиды; ниже сплошь распространена краснообломочная сва­ренная пирокластика афировых преимущественно калиевых ба­зальтов, исландитов и спилитов, которая перемежается с потока­ми неокисленных лав того же (5182-5215 м и др.) и кислого составов (5265-5312,4 м).

В целом разрез вулканокластической и переходной толщ малоконтрастный, содержит в разных пропорциях при­знаки как вулканогенного, так и оса­дочного происхождения. Толщина этих пород увеличивается с глубиной. Флишоидная толща при слабых фациальных отличиях от низов переходной рез­ко отличается более кислым составом обломочного материала.

При сопоставлении вскрытого разре­за с проектным установлено превышение мощности отложений в 1,5 раза. В результате бурения возникли вопро­сы, касающиеся геометрии, простран­ственных и генетических взаимоотно­шений слагающих верхнюю часть про­гиба комплексов. Решение их возмож­но при дальнейшем углублении СГ-4 и выполнении целенаправленных ис­следований в околоскважинном про­странстве, включая бурение вспомога­тельных структурных скважин.

При проведении циклического ана­лиза в пределах вскрытого скважиной разреза выделено пять мегаритмов, границы которых совпадают или близ­ки к границам отмеченных толщ и под-толщ на глубинах 3487 м, 2640 м, 1919 м и 430 м и характеризуются рез­ким изменением литологии пород.

Нижний мегаритм 3487-4064 м со­ответствует флишоидной толще и является вулканогенно-осадочным. В раз­резе полностью не вскрыт. Он сформировался в условиях слабой вулканиче­ской активности. В нем преобладают удаленные мелкообломочные фации андезидацитового состава, широко раз­виты тонкослоистые алевролитовые и алевропсаммитовые разности осадоч­ных пород, доля которых к верхам мегаритма возрастает до 80-90 %. Чере­дование тонкослоистых прослоев, ха­рактеризующихся маломощной (0,01- 0,5 м) двухчленной, реже трехчленной ритмикой со слабо дифференцирован­ными гравийными, образует контраст­ные мезоритмы мощностью от 10 до 75 м.

Мегаритм 2640-3487 м, условно от­носимый к вулканогенно-осадочному типу, характеризуется тем, что на фо­не мелкой ритмичности (от долей до 5 м) мелкопсефито-псаммитовых раз­ностей проявлены контрастные гетерообломочные ритмы мощностью от 2-3 до 15-20 м, где крупнопсефитовые и агломератовые обломки изолированно погружены в псаммитовый субстрат. Периодически повторяющиеся интерва­лы развития алевропелитовых разно­стей позволяют выделить ряд мезорит-мов с границами на 3986 м, 3332 м, 3276 м, 3160 м, 3083 м и 2986 м. Отме­ченные особенности мегаритма, веро­ятно, обусловлены неравномерными проявлениями вулканической активно­сти и грязекаменных потоков.

Три верхних мегаритма (1919- 2540 м, 430-1919 м, 0-430 м) вулканогенные, частью оеадочно-вулканогенные. Они сформировались в результате нескольких вспышек вулканической деятельности с общей тенденцией к ее нарастанию.

Строение первых двух в общих чер­тах близкое. В их основании ритмич­ность относительно мелкая, с мощно­стью преобладающих элементарных ритмов 2-3 м. В центральных частях мегаритмов выделяются крупные рит­мы мощностью до 10-30 м и более. Доля грубообломочного материала вы­растает здесь до 70-90 %. В верхних; частях снова отмечена мелкая ритмич­ность (от 0,1-0,2 м до 2-3 м). В со­ставе ритмов увеличивается доля сор­тированного вулканогенного материа­ла, а в некоторых из них в интервале 1919-2007 м появляются прослои кремнистых алевропелитовых пород мощностью 0,2-5 см.

Верхний-эффузивный мегаритм (О-430 м) сформировался в результа­те нескольких импульсов вулканиче­ской деятельности с короткими пере­рывами между ними (88-105 м). Ниж­няя часть мегаритма сложена обильно-порфировыми пироксен-плагиофировыми базальтами, в средней (120- 262 м)-залегают подушечные лавы афировых андезибазальтов-базальтов, а в верхах-плагиофировые андезибазальты.

В фациальном отношении в разви­тых по всему разрезу отложениях отмечаются подводные условия образо­вания, на отдельных глубинах отличающиеся характером вулканизма и удаленностью зон аккумуляции вулканического материала от береговой ли­нии, что выражается различиями его гранулометрического и вещественного состава, а также разной степенью перемыва и сортировки. В целом, по-ви­димому, господствовала обстановка островных вулканов с преобладанием фации субаквальных пирокластических. и подводных гравитационных грязека­менных потоков. При этом нижняя часть разреза на интервале развития алевритистых, песчаных и гравийныу ритмов флишоидной толщи отвечает наиболее глубоководной, удаленной от вулканических построек области. Выше по разрезу преобладают мелковод­ные склоновые фации вплоть до субаэральных, регистрируемых горизонтами с красноцветными гематизированными обломками.

.

Геологический разрез СГ-4

Рис. 4. Геологический разрез СГ-4, составлен в Уральской экспедиции сверхглубокого бурения ГНПП “Недра”:

1 – базальты плагиофировые, пироксен-плагиофировые (а), андезитобазальты (о); 2 – андезиты (а), дациты, риодациты (б); 3 – туфы глыбовые (а), агломератовые (б), крупнопсефитовые (в), мелкопсефитовые (г), кристаллолитотуфы (е), 4- туффиты агломератовые (а), крупнопсефитовые (б), мелкопсефитовые (в), псаммитовые (г); 5- тефроиды мелкопсефитовые (а), псаммитовые (б); 6- туфоконгло-мераты, туфопесчаники; 7 – туфогравелиты, туфопесчаники; 8 – туфопесчаники, туфоалевропесчаники; 9 – туфопесчаники, туфоалевролиты; 10- песчаники, алевропесчаники, алевролиты; 11- кремнистые, углисто-кремнистые алевролиты, алевропелиты; 12 – диориты (а), кварцевые диориты (б); 13 – внемасштабный знак даек основного (а) и среднего (б) составов; 14 – тектонические нарушения: сбросы, взбросы (в), малоамплитудные надвиги (б); 15- границы геологических тел (а), толщ и подтолщ (б), пачек (в)

3 . Прогнозные модели Уральской СГ-4

Среди уральских исследователей, в т. ч. име­ющих отношение к СГ-4, еще сильны позиции сторонников классической (фиксистской) геологии, рассматривающие регион как достаточно фикси­рованную полициклическую геосинкли­нальную систему с интенсивным развитием магмо – и рудоподводящих глу­бинных разломов и повторяемостью в каждом цикле однотипных геологических и рудных формаций.

Согласно альтернативной, мобилистской концепции Урал представляет собой сложное покровно-складчатое со­оружение, состоящее из разнородных аллохтонных пластин, образованных путем крупных горизонтальных перемещений геологических масс. Эти представления вносят существенные коррективы в схему металлогенического развития региона, дают новое толкование природе и перспективам его рудоносности

Отметим, что деление геотектониче­ских позиций на фиксистские и мобилистские в какой-то мере условное и не отражает всего разнообразия представлений о месте заложения, движу­щих силах и истории развития Уральской эвгеосинклинали. В последнее время наблюдается тенденция в сближении позиций, что выражается в при­знании представителями фиксистского направления ограниченного спрединга с возникновением раздвигов, обнажающих симатическую кору.

Благодаря тесному сотрудничеству большой группы исследователей удалось сформировать комплект из 11 мо­делей, отражающих практически весь спектр существующих прогнозных представлений о глубинном строении района бурения (рис. 2). Не имея воз­можности подробно охарактеризовать все модели, остановимся на наиболее существенных и принципиально отли­чающихся.

В. С. Дружининым составлены осно­вополагающие сейсмические и геолого-геофизические разрезы и дан вариант прогнозной модели, основными элемен­тами которой являются структурно-ве­щественные комплексы, физическая характеристика, положение в разрезе сейсмических границ, возможная их природа. Согласно этой модели СГ-4 должен вскрыть полный разрез уралид мощностью примерно 11 км, пройти около 4 км по рифейским образовани­ям и в интервале 14-14,5 км войти в образования древнего комплекса осно­вания предположительно архейско-протерозойского возраста. При этом в составе уралид выделяются четыре комплекса, среди которых наиболее интересным и неясным будет комплекс пород на глубине 7-9 км. В целом геологическая привязка всех выделяе­мых комплексов и их литологический состав в значительной мере условные. Это попытка спроецировать на разрез по скважине поверхностные образова­ния, развитые к западу от нее.

По Ю. С. Каретину (рис. 3, а) Та­гильский прогиб представляет целост­ную грабенообразную структуру с плоским днищем и четко выраженны­ми бортами. Развита сложная система листрических сбросов растяжения, большей частью трансформированных в малоамплитудные надвиги. Фиксистское существо модели автор обос­новывает тем, что амплитуды смеще­ний относительно малы и не нарушают существенным образом первичную троговую синседиментационную структуру растяжений. Расположенные к западу от СГ-4 интрузии Платиноносного поя­са рассматриваются в виде несмещен­ной магмоподводящей зоны, субверти­кально уходящей на глубины свыше 50 км и не пересекающейся скважиной. По выражению автора, эти интрузии “сшивают” весь разрез.

В. Н. Пучков при построении своей мобилистской модели (см. рис. 3, б) исходит из результатов геологических исследований в зоне сочленения Тагильской и Центральноуральской зон севернее района бурения, где устанавливается залегание пород Тагильского комплекса в виде тектонического покрова регионального значения. Используя изменение положения с глу­биной отражающих площадок (по дан­ным MOB и ГСЗ) с глубиной, автор модели предполагает соответствующее выполаживание поверхностей тектони­ческого срыва на глубине и прогнози­рует их подсечение сверхглубокой скважиной. Одновременно предполага­ется возможность повторения в разре­зе отложений с глубины 7 км, имею­щих более молодой возраст, чем выше­лежащие, в пользу чего, по мнению. В. Н. Пучкова, свидетельствует уста­новленная ГСЗ неоднократная инвер­сия скоростей на глубинах 7-17 км. На вопрос о том, какие комплексы тек­тонически совмещаются в предполагае­мом разрезе СГ-4, автор не дает одно­значный ответ. В качестве возможного состава наиболее интересной мало­плотной пластины на глубине 7-9 км высказаны следующие варианты: вулканогенно-осадочные отложения верх­него силура-девона Тагильской зоны; плагиограниты, плагиогнейсы (плагио-мигматиты); серпентинитовый меланж, сближенные зоны рассланцевания; ордовикско-девонские существенно терригенные отложения континентального подножия. Пластина, расположенная на глубине 9-11 км, наиболее вероят­но, принадлежит меланократовому фундаменту (габбро, амфиболиты, ги-пербазиты), первично подстилавшему вулканогенные комплексы Тагильской зоны. На глубине 11 км и ниже ожи­дается вскрытие метаморфических, принадлежащих фундаменту утонь­шенного, частично разрушенного при рифтогенезе края Восточно-Европейского континента – переходной зоны oт континентальной коры к океанической. Не исключено, что на глубине 11-15 км повторяетя тектонический разрез палеозойских эвгеосинклинальных толщ и их меланократового основания.

В модели С. Т. Агеевой, А. Г. Волч кова и П. С. Ревякина (ЦНИГРИ) под Тагильской эвгеосинклиналью предполагается куполовидное поднятие гранулит-базитового слоя, свод которого расположен на глубине около 12- 13 км. Выше должны залегать слабо вскрытые на поверхности отложе­ния океанической коры, в основании которых залегает мощный офиолитовый комплекс, инъецированный круп­ными телами гипербазитов.

В. И. Сегалович (КамНИИКИГС) составил два крайне мобилистских варианта модели, исходя из гипотезы об­ширного, протяженностью в сотни километров, тектонического перекрытия окраины Восточно-Европейского континента покровами, состоящими из продуктов спрединга окраинных и междуговых бассейнов, а также островодужных вулканитов. Согласно этой модели, СГ-4 до глубины 6 км вскроет вулканогенно-осадочные комплексы верхней части Тагильского прогиба, далее пересечет интрузивные образо­вания Платиноносного пояса, метаба-зиты низов лландовери, мощную (порядка 3 км) пластину ультрабазитов, и, наконец, после 14 км войдет в отло­жения верхнего девона – нижнего кар­бона Восточно-Европейской плиты. Со­гласно другому варианту, СГ-4 пересе­чет весь разрез аллохтонной части про­гиба, называемой автором “Тагиль­ским пакетом покровов”, и, возможно, достигнет подстилающей кровли Улсовско-Висимской зоны поддвига (Оз- D2).

Н. Г. Берлянд (ВСЕГЕИ) отдает предпочтение существенно габброидному варианту разреза, согласно которо­му в интервале 7-14 км предполага­ется вскрыть габброиды, сопоставимые с арбатским комплексом, выходящим на поверхность западнее СГ-4.

По К. П. Плюснину (ПГО “Уралгеология”), Тагильский прогиб является сложным образованием, которое фор­мировалось на одних стадиях как гра­бен, а на других-как рамповая структура. В предложенной им модели большая роль отводится разновозраст­ным тектоническим нарушениям, раз­бивающим исследуемую часть прогиба на многочисленные блоки, что услож­няет увязку вскрываемого скважиной разреза с поверхностными структура­ми и требует проведения систематиче­ских структурно-тектонических иссле­дований.

В рифтогенной модели Л. И. Десятниченко (ПГО “Уралгеология”) фор мирование эвгеосинклинального проги­ба связано с интенсивным растяжением земной коры вдоль глубинного раз­лома, сопровождающимся постепенным заполнением формирующейся структу­ры раннегеосинклинальными образованиями боткой фундамента. В последующие этапы переработке подвергаются и ранние офиолитовые ком­плексы. Таким образом, под прогибом сохраняются лишь переработанные фрагменты допалеозойских комплек­сов, и перед скважиной стоит нелегкая задача идентификации агломерата ге­терогенных образований.

Несмотря на то что практически все модели базируются, по существу, на одной и той же геофизической инфор­мации, в совокупности они выявляют разноречивость представлений о глубинном строении Урала. Исключая са­мую верхнюю часть прогиба, модели противоречат по всем более или менее существенным компонентам прогнози­руемого разреза: его непрерывности или тектонической разобщенности, воз­можности пересечения скважиной тел габброидов и ультрабазитов, глубине и составу основания прогиба, перспек­тивам вскрытия рудоносных комплек­сов, природе слоев, инверсии скоро­стей и др.

Можно сделать вывод, что указанная раз­норечивость объективно и наглядно от­ражает не только состояние глубинных геолого-геофизических исследований на Урале, но и, в какой-то мере, всей геологии в целом. Нетрудно понять жизненную необходимость сверхглубо­кого бурения, поскольку только пря­мое проникновение в недра способно обеспечить теоретическую геологию и прикладные металлогенетические ис­следования фундаментальной факто­графической основой, существенно освободив их от всякого рода условно­стей и фантазий.

Первоначально намеченную проект­ную глубину СГ-4- 15 км следует счи­тать достаточно обоснованной. При этом скважиной должны пересекаться основные структурно-вещественные комплексы Тагильского прогиба, вклю­чая меланократовые образования ниж­ней части разреза, и достигнуто надеж­ное вскрытие фундамента с глубиной врезки до 1,5 км. По наиболее оптимистичным прогнозам (Ю. С. Каретин, В. С. Орлов), предполагающим отно­сительно менее глубокое залегание фундамента прогиба, минимально не­обходимая глубина скважины может доставить 12-13 км. С учетом этого глубину 12 км можно определить как оптимальный рубеж, по достижении которого целесообразно рассмотреть вопрос о конечной глубине бурения скважины.

Прогнозные модели верхней части земной коры района Уральской СГ-4 ( с упрощениями авторов)

Рис.3

А – фиксистская (геосинклинально-троговая), по Ю. С. Каретину, 1988; б- мобилистская, по В. Н.Пучкову, 1988 .

I – протоофиолитовая ас­социация, 2 – гранулито-базитовый комплекс архея, 3 – геофизический базальтовый слой, 4 – меланократовый фундамент; типы разре­зов: I – Лемванский, II-Тагильский

5. Петрографическая характеристика горных пород

Эффузивные породы. Базальты и андезибазальты. Среди эффу­зивных пород лавовой фации могут быть выделены четыре разно­видности, слагающие обособленные пачки.

Породы верхних трех пачек – андезибазальты – различаются количеством, размером и составом вкрапленников. В верхней пачке они имеют размеры в доли миллиметра, составляют до 5 % объема породы и представлены альбитизированным плагиоклазом и клинопироксеном. Породы второй сверху пачки преимущественно афировые, третьей – содержат от 20 до 50 % крупных (до 4 мм) вкраплен­ников плагиоклаза, иногда образующих сростки, и единичные болеемелкие вкрапленники клинопироксена и ортопироксена, замещен­ные хлоритом.

Основная масса андезибазальтов состоит из микролитов альбитизированного плагиоклаза, расположенных беспорядочно (участ­ками субпараллельно) или собранных в сноповидные срастания, зерен клинопироксена, пылевидных выделений и скелетных кри­сталлов рудного минерала (магнетита-титаномагнетита) и продук­тов изменения стекловатого мезостазиса – хлорита, эпидота, пренита. Для афировых андезибазальтов характерны обильные (до30 % объема породы) миндалины, в других разновидностях они единичны.

Базальты, слагающие четвертую сверху пачку, содержат вкрапленники плагиоклаза, клинопироксена и ортопироксена (псевдоморфозы хлорита и карбоната), составляющие от 20 до 50 % объема породы. Основная масса на 30-70 % состоит из микролитов плагиоклаза, в промежутках между которыми рас­полагаются зерна клинопироксена и хлоритизированное и соссюритизированное стекло. Пылевидные выделения и мелкие кри­сталлы рудного минерала обычно приурочены к псевдоморфозампо ортопироксену. Миндалины, достигающие 2,5 см в попереч­нике, редки.

Во всех разновидностях эффузивов в качестве вторичных минералов, слагающих миндалины, неправильные гнезда и жилки, встречаются хлорит, пренит, пумпеллиит, эпидот, каль­цит, кварц, опал, альбит. Судя по высокой степени сохранности структуры пород и первичных минералов (клинопироксена, магнетита), а также составу и количеству вторичных минералов, метаморфизм пород соответствует пренитпумпеллитовой фации.

Вулканогенно-обломочные породы. Наиболее распространенный тип вулканогенно-обломочных пород (особенно до глубины 3 км) – тефроиды. Глубже 1870 м значительную роль играют вулканогенно-осадочные породы: туффиты различной размерности, туфопесчаники и туфоалевролиты. Туфы выделяются в виде маломощных слоев среди тефроидов по наличию мелких осколков стекла рогульчатых и серповидных форм, а также обломков со следами закалки, болееразнообразной степени окатанности обломков (от угловатой до среднеокатанной).

Тефроиды в основном кристаллолитокластические или литокластические, реже литовитрокластические и кристалловитролитокластические, среди туфов встречены и кристаллокластические разности. Цемент гидрохимический, поровый или соприкосновения, редко порово-базальный и базальный; состоит из пренита, карбоната, хлорита, пумпеллиита, эпидота, цоизита, кварца, бурого глинистого вещества, иногда гематитизирован. Тефроиды и туфы имеют однообразный базальт-андезибазальтовый состав обломков, лишь ниже 3683 м резко возрастает роль кислой кластики.

По степени метаморфизма обломки и цемент не отличаются от эффузивных пород верхней пачки. В вулканогенно-обломочных породах по сравнению с эффузивными среди новообразованных минералов в интервале до глубины 3000 м несколько возрастает (>10 %) роль пумпеллиита и эпидота, а глубже 3000 м – каль­цита и кварца. Во всех породах литокластов клинопироксен обычно свежий, плагиоклаз представлен альбитом, часто сопровож­дающимся продуктами деанортизации, ортопироксен и оливин присутствуют в виде полных псевдоморфоз хлорита, эпидота, кальцита, халцедона.

Среди базальтов и андезибазальтов могут быть выделены разно­видности со следующими парагенезами вкрапленников: СРх-PI; PI; OI-OPx-CPx-PI, PI-СРх (с преобладанием последнего), СРх. Породы различаются также размером вкрапленников, их количеством, структурой и составом основной массы, наличием миндалин.

Клинопироксен-плагиофировые андезибазальты и базальты содер­жат вкрапленники размером от долей до 1-2 мм, среди них плагиоклаз составляет от 5-10 до 25 %, клинопироксен – до 3-5 % объема породы. Встречаются разновидности с сериально-пор­фировой структурой, максимальным размером вкрапленников до 5-б мм и количеством вкрапленников плагиоклаза до 20-25, клинопироксена – до 10-15 %. Иногда оба типа вкрапленников образуют гломеры. Структура основной массы пород чаще гиалопилитовая или гиалиновая, реже интерсертальная; иногда отмечается флуктуационная текстура.

Плагиофировые андезибазальты из различных обломков не­сколько различаются по структуре, количеству миндалин. Встре­чаются разности с порфировой, гломеропорфировой (часто с вкрапленниками плагиоклаза двух генераций), сериально-порфи­ровой структурой. Количество вкрапленников от единичных до 40-45 % объема породы, размеры их – доли миллиметра, реже до 2,5 мм. Некоторые вкрапленники содержат включения стекла, замещенного хлоритом. Структура основной массы – от гиалиновой до гиалопилитовой, иногда интерсертальная с участ­ками пилотакситовой, спилитовидной, в отдельных случаях скрытокристаллическая.

В оливин-ортопироксен, клинопироксен-плагиофировых базаль­тах вкрапленники плагиокла размером до 1х2 мм составляют 20-30 % объема породы, клинопироксена – 2-15 %. Наряду с ними в породах присутствуют псевдоморфозы по вкрапленникам других темноцветных минералов (до 5-7 %), сложенные хлоритом, участками эпидотом, кальцитом и халцедоном, часто содержащие включения зерен рудного минерала. Судя по характерным формам, псевдоморфозы принадлежат к ортопироксену. Присутствие в этой группе пород нормативного оливина позволяет допустить, что отчасти псевдоморфозы являются апооливиновыми, хотя типичные для этого минерала формы не обнаружены. В инт. 2700-2900 м. встречены разновидности, в которых во вкрапленниках присутствует и амфибол (2-3 %). Породы имеют интерсертальную, гиалопилитовую, гиалиновую структуру основной массы.

Плагиоклинопироксенофировые базальты обнаружены в единич­ных шлифах на различных глубинах. Во вкрапленниках, составля­ющих в целом от 7-8 до 40-45 % объема породы, клинопироксен заметно преобладает над плагиоклазом, часто имеет более крупные размеры. В отдельных шлифах присутствуют также редкие псевдо­морфозы по ортопироксену. Основная масса породы – гиалиновая, представляет собой мелкозернистое хлоритизированное стекло с флуктуационной текстурой, определяющейся субпараллельной ориентировкой сплющенных миндалин и игольчатых микролитов плагиоклаза.

Клинопироксенофировые базальты (шл. 19125) присутствуют в обломках размером 1-5 мм. Вкрапленники клинопироксена (до 0,8х0,6 мм), часто образующие сростки, составляют 15-25 % объема породы, основная масса имеет гиалиновую, иногда переходную к гиалопилитовой структуру.

Во всех порфировых базальтах и андезибазальтах литокластов основная масса состоит в основном из разложенного стекла, в которое заключены микролиты плагиоклаза (размером до 0,1 мм), клинопи­роксена (до 0,05 мм) и тонкая пыль рудного минерала. Характерные вторичные минералы мезостазиса – хлорит, в меньшей мере пренит, пумпеллиит, эпидот. Эти же минералы наряду с карбонатом и халцедоном слагают миндалины, составляющие обычно 5-10, редко до 30-40 % объема пород.

Наряду с порфировыми базальтами и андезибазальтами в литокластах встречаются и их афировые разновидности с гиалиновой, гиалопилитовой, спилитовидной, а также пилотакситовой и интерсертальной структурой. (Не исключено, что часть их представляет собой участки основной массы порфировых пород.)

Более салические, чем андезибазальты, породы имеют в составе литокластики подчиненное распространение.

Среди андезитов есть плагиофировые и клинопироксен-плагиофировые разновидности; структура основной массы в основном гиало-пилитовая, реже пилотакситовая.

Обломки кислых пород – плагиофировых и кварц-плагиофировых андезидацитов, дацитов, реже риодацитов – постоянно встречаются глубже 3500 м. Их не всегда удается отличить от встречающихся в этом интервале гидротермально-метасоматически измененных пород. Они содержат микровкрапленники плагиоклаза (до 5-7 %) и кварца (до 3-5 %) или только плагиоклаза, а также иногда клинопироксена (большей частью псевдоморфозы по нему). Вкрапленники кварца часто оплавлены, иногда имеют “изъеденные” края, содержат включения хлорита и карбоната. Основная масса обычно представ­лена агрегатом кварца и альбита микрофельзитовой, фельзитовой, микролитозернистой, иногда с элементами пойкилобластовой струк­туры, содержит серицит, сфенлейкоксен, эпидот, рудный минерал, карбонат, апатит.

Наряду с описанными типами литокластов постоянными элемен­тами тефроидов и туфов являются витрокласты и кристаллокластический материал.

Стекловатые породы лавового облика периодически встреча­ются в обломках в интервале 445-3350 м. Присутствуют как практически нераскристаллизованные разновидности, представ­ленные хлоритизированным, часто пумпеллиитизированным или пренитизированным стеклом, так и с небольшим количеством микролитов, реже вкрапленников измененного плагиоклаза. Выделяются стекловатые породы с флюидальностью (обусловленой субпараллельной ориентировкой вытянутых миндалин) и без нее (с миндалинами изометричной формы). Разнообразно выпол­нение пустот и пузырьков (хлорит, мозаичный кварц, халцедон, пренит).

Кристаллокласты встречаются в туфах и тефроидах повсеместно, иногда образуя самостоятельные слои в верхних частях ритмов. Кристаллокласты принадлежат к плагиоклазу и клинопироксену, размер их до 5-6 мм. Часто они имеют правильные кристаллографические формы, ненарушенную зональность и представляют собой, по-видимому, практически не подвергшийся обработке пирокластический материал. Встречены также кристаллы со сглаженными формами, резорбированные. Ниже глубины 3625 м (особенно в интервале 3720-3825 м) в кристаллокластах появляются обломки кварца до 5 мм в попереч­нике с включениями хлоритизированного стекла каплевидной формы.

Туфоалевролиты, туфопесчаники, туффиты. Слоистые туфоалевролиты, туфопесчаники и туффиты алевритовой размерности встречены в керне скважины СГ-4 преимущественно на трех уровнях: в интервалах глубин 74,7 м-127 м, в том числе средиподушечных лав, 1717 м-1966,5 м и глубже 2979,3 м. Сло­истость выражена вариациями размерности обломков, состава цементирующей массы и обломков, реже ориентировкой послед­них. Сортированность материала обычно хорошая. Окатанность обломков широко варьирует, чаще они угловатые и слабоокатанные. В обломочном материале – Кристаллокласты плагиок­лаза, кварца, клинопироксена, а также обломки пород, ранее описанных в составе крупных литокластов. Цемент большей частью – соприкасания, реже поровый, гидрохимический. Со­держит пелитоморфное бурое вещество, глинистые минералы, пренит, хлорит, карбонат, кварц, альбит, пумпеллиит, эпидот, сфен, серицит, рудные минералы, углистое вещество. Для пород первого уровня характерна хорошая сортированность материала, преобладание алевролитовых и пелито-алевритовых разностей. Для второго уровня – меньшая сортированность обломков, обилие кристаллокластов плагиоклаза. Третий уровень характеризуется обилием алевритового материала, высоким со­держанием в нем углистого вещества (до 1,5 %) и сульфидов (до 4 %), придающих породам отдельных слоев черную окраску, большим количеством обломков кислых эффузивов и метасоматитов. По границам слоев и в прослойках черных алевролитов встречаются скопления мелких кристаллов пирита, халькопирита, пирротина.

Интрузивные породы. Среди интрузивных пород могут быть выделены две группы. Породы одной из них – базальты и андезибазальты, встречающиеся преимущественно в верхних 1000 м разреза, по вещественно-структурным особенностям и, вероятно, по возрасту близки к лавам. Другая группа – меланобазальты и микродиориты – не имеют аналогов среди вулканических пород и являются, вероятно, более глубинными и более молодыми, чем субвулканические базальты и андези­базальты.

Базальты и андезибазальты. Породы, как правило, имеют отчетливую порфировую структуру и различаются главным образом по составу, количеству и размерам вкрапленников. Выделяются разновидности, слагающие обособленные тела, со следующими парагенезами вкрапленников:

1. PI (20-35 %) – СРх (10-15 %) – ОРх (10-15 %), преобладающий размер вкрапленников 0,2-0,8 мм (49,9-88 м, обр. 48-202; 695-700 м, обр. 4544-4570);

2. СРх (20-30 %) – ОРх (10 %) – PI (5 %), размер 0,5- 1 мм (79-84 м, обр. 135-183);

3. PI (25-30 %) – 01? (5 %) – P1 (5 %), размер 1-6 мм (384-395,5 м, обр. 2478-2527, 2534-2546);

4. pi (40-60 %) – СРх (10-20 %), размер 0,5-2 мм (922,6- 942,5 м, обр. 6124-6238);

5. P1 (10-15 %) – СРх (3-5 %), размер до 6 мм (1023- 1025 м, обр. 6763-6781; 2830,6-2833,2 м, обр. 17384-17391);

6. СРх (20 %) – 01 + ОРх (5-7 %) – P1 (5 %), размер до 1 мм (3712,5-3116,1 м, обр. 22753-22792).

В самостоятельную разновидность могут быть выделены афировые базальты, слагающие ряд секущих тел внутри третьей (сверху) пачки лав (в интервале глубин 264,8-384 м, обр. 1692, 1747-1772, 2010, 2048 и др.) Изредка в этих породах встречаются вкрапленники клинопироксена размером до 1-4 мм, характерны мелкие миндалины хлорита.

Основная масса пород в разных телах и разных частях одного тела имеет неодинаковую степень раскристаллизации, структура ее меняется от гиалопилитовой до полнокристаллической призматически-зернистой. Основная масса состоит из удлиненных кристаллов плагиоклаза и клинопироксена и переменных количеств полностью замещенного вторичными минералами мезостазиса. В разновидностях 3,4 и 5 плагиоклаз заметно преобладает над пироксеном, в других разновидностях объемы их близки. Рудные минералы группы магнетита-титаномагнетита выделяются в виде мелких кристаллов (часто включенных во вкрапленники оливина или ортопироксена), а также скелетных дендритоподобных кристаллов и пылевидных скоплений. В разновидностях 2 и 6 встречаются единичные зерна хромшпинелида, включенные во вкрапленники темноцветных мине­ралов.

Во всех породах плагиоклаз альбитизирован, соссюритизирован, замещен частично пренитом, по оливину и ортопироксену образованы полные псевдоморфозы хлорита и карбоната. В основной массе развиваются пренит, кварц, кальцит, пумпеллиит.

Меланобазальты встречаются на протяжении всего разреза СГС-4 в виде секущих тел мощностью до 8,7 м. В качестве особой их разновидности могут быть выделены лампрофироподобные меланобазальты, встреченные в обломках (возможно, “хвост” дайки) на глубине 3125,6 (обр. 19063-19065) и 3621 м (обр. 21922), а также в дайках.

Меланобазальты имеют обычно хорошо выраженную порфировую структуру. Вкрапленники составляют до 30-35 % объема породы и представлены клинопироксеном (20-25 %) и полными псевдомор­фозами по оливину (5-10 %). Кристаллы клинопироксена имеют размер до 6 мм, короткопризматическую форму, часто зональны и полисинтетически сдвойникованы. Псевдоморфозы по оливину также короткопризматические, иногда бочонковидные, размером не более 2-3 мм. Они сложены хлоритом или карбонатом, реже (полностью или только в центре зерен) кварцем. Изредка встречаются микро­вкрапленники соссюритизированного плагиоклаза.

Основная масса пород имеет в центральных частях тела меланобазальтов структуру, близкую к призматически-зернистой, а в краевых частях – от интерсертальной до гиалопилитовой. Она состоит из зерен (размером 0,05-0,1 мм) клинопироксена изометричной или короткостолбчатой формы (20-35 %), альбитизированного и соссюритизированного плагиоклаза (15-21 %), амфи­бола (5-7 %), рудного минерала из группы титаномагнетита-магнетита (3-5 %). Встречаются редкие зерна хромшпинелида, обычно внутри псевдоморфоз по оливину. Интерстиции заполнены тонкочешуйчатым хлоритом (40-55 %). Редкие миндалины размером 0,3-0,7мм (5-7 % объема породы) сложе­ны пренитом и хлоритом, вокруг миндалин развиваются мелкие зернышки амфибола.

Лампрофироподобные меланобазальты отличаются от описанных выше присутствием до 15-20 % амфибола, меньшим размером вкрапленников (не более 1 мм).

Микродиориты образуют достаточно мощные тела на разных глубинах. Структура их гипидиаморфнозернистая, призматически-зер­нистая, на глубинах ниже 3450 м неотчетливо порфировидная за счет вкрапленников клинопироксена размером до 2 мм. Главные минералы – альбитизированный плагиоклаз (часто по нему разви­ваются также эпидот, карбонат, хлорит, пренит) таблитчатой, брусковидной формы, размером 0,2-0,8 мм (60-80 %) и роговая обманка размером 0,1-0,6 мм (10-15 %). В породе также присут­ствуют хлорит, частично развивающийся по роговой обманке и, возможно, по биотиту (?) или заполняющий интерстиции; биотит (0-3 %); кварц – от единичных зерен до 4-7 %; клинопироксен (до 5 %) с развивающимися по нему эпидотом, карбонатом, кварцем;рудный минерал (до 4 %); апатит (до 1 %) в виде призматических и игольчатых кристаллов.

По петрографическим и петрохимическим данным состав вулканитов в. пределах первых трех толщ до глуби­ны 3487 м преимущественно базальто­вый (62 %), менее распространены андезибазальты (32%) и андезиты (6%). В интервалах вскрытия флишоидной толщи (3487-4064 м) состав пород довольно резко меняется на андезидацитовый (вплоть до риодацитов). По суммарной щелочности преобладают вулканиты нормального ряда, на долю субщелочных приходится третья часть проанализированных образцов. По ти­пу щелочности в равной мере развиты как калиевые, так и калиево-натриевые разности. Большинство пород (63%) известково-щелочной серии, остальные – толеитовой.

При анализе изменчивости с глуби­ной содержаний породообразующих оксидов и отдельных элементов, с одной стороны, устанавливается незако­номерный характер изменения их кон­центраций как свидетельство быстро меняющихся условий формирования комплексов со сложным сочетанием вулканических и осадочных процессов, придающих разрезу некоторые черты “мусорности”. С другой стороны, коле­бания содержаний некоторых оксидов, особенно в их сочетании, груборитмичные и, вероятно, отражают эволюцию локальных магматических очагов, пи­тающих вулканы в районе СГ-4.

За исключением близости составов эффузивной (0-430 м) и верхней подтолщи вулканокластических толщ (430-1873 м), остальные подразделе­ния разреза петрохимически сущест­венно различаются. При этом наиболь­шие аномалии химического состава свойственны интервалу флишоидной толщи.

В целом по петрохимическим дан­ным устанавливаются умеренно слабая степень дифференцированности развитых во вскрытой части разреза СГ-4 вулканитов и принадлежность их к островодужным комплексам, отлича­ющихся от современных аналогов по­следних преобладанием базальтов, бо­лее высокой общей щелочностью, повышенными концентрациями Сг, Со, Ni, V, Sr.

Минералого-петрографическим ана­лизом метаморфических ассоциаций установлено, что в пределах всего вскрытого разреза породы претерпели. метаморфизм пренит-пумпеллитовой фации. При этом степень метаморфиз­ма постепенно нарастала с глубиной и по ряду признаков, наблюдаемых в нижней части разреза (исчезновение с глубины 3400 м пумпеллиита, умень­шение доли пренита), можно ожидать скорое вхождение скважины в область развития зеленосланцевой фации метаморфизма. Более подробно особенности метаморфических преобразований в пределах вскрытого СГ-4 разреза рассмотрены в работе И. В. Викентьева и др., где сделан вывод о про­текании этого процесса в условиях не­высокого палеоградиента (до 20 °С на 1 км) и температуры не выше 250 °С.

С долей условности можно выделить несколько типов рудной минерализа­ции, среди которых наиболее интерес­ны послойные и кластогенные прояв­ления.

Послойная сульфидная минерализа­ция наиболее проявлена в нижней вулканогенно-осадочной части разреза (2640-4064 м) в интервалах развития ритмично-слоистых пород, тяготея к верхам ритмов, сложенных туфоалевролитами и туфопесчаниками. Она представлена пиритом, в т. ч. фрамбоидальным, халькопиритом, борнитом, блеклыми рудами, сфалеритом. Одна из наиболее заметных сульфидосодержащих зон пересечена скважиной в интервале 3160-3270 м.

Кластогенный тип представлен пре­имущественно пиритом и гематитом, в различной степени насыщающих изме­ненные обломки в составе вулканоген-ных пород разреза. Часть из них, об­разована в прижерловых условиях и характеризуется развитием рудных ми­нералов в периферической части об­ломков, другая часть-рудокласты, представляющие разбитые фрагменты сульфидосодержащих пород, привне­сенные из других мест локализации.

Другие типы рудной минерализации имеют подчиненное значение. Они представлены, как правило, вкрапленностью пирита, гематита, халькопирита, пирротина, реже сфалерита, галенита и др., пространственно тяго­теющей к приконтактовым частям дайковых тел и зонам гидротермальных изменений.

Установлен ряд других особенностей и закономерностей распределения руд­ных минералов в разрезе СГ-4, среди которых особого упоминания заслужи­вает факт существенного увеличения в нижней части разреза, с глубины 3400 м, количества пирротина при со­ответствующем уменьшении доли пи­рита, что хорошо согласуется с нара­станием степени метаморфизма вниз по разрезу, и таким образом устанав­ливает взаимосвязь элементов мета­морфической и рудной зональностей.

Среди исследований СГ-4 и района ее бурения нет единства в оценке вы­явленной в разрезе СГ-4 рудной мине­рализации. По мнению одних, она от­носится к медно-цинковоколчеданному типу и близка по составу к рудам Кабанских месторождений, расположенных западнее СГ-4, что можно рассма­тривать как свидетельство в пользу расширения пространственных и вре­менных рамок продуктивного колчеданообразования. По мнению других, до­казательств для такого заключения еще недостаточно. Во всяком случае нет сомнения, что получена ценная и уникальная информация по характеру и особенностям локализации рудной минерализации, существо которой пред­стоит окончательно выяснить в процес­се дальнейших исследований при углу­блении СГ-4.

Скважиной встречено несколько зон тектонических нарушений (580-620 м, 1470-1500 м, 2495-2505 м, 3480- 3560 м) и разной степени трещиноватости пород. При этом, несмотря на целенаправленные поиски, пока не по­лучено сколько нибудь убедительных фактов в пользу тектонического сдваи­вания, существенного разобщения той или иной части разреза. Напротив, крепнет уверенность в его непрерыв­ности.

Стратиграфическая и формационная принадлежность всего вскрытого раз­реза и его отдельных частей проблема­тична и находится в стадии активного изучения и обсуждения. Пока доста­точно надежно устанавливается возра­стная принадлежность разреза глубже 3 км. Здесь в образцах кремнистых алевролитов интервала 3070-3716 м, отобранных специалистами УГСЭ ПГО “Уралгеология” и ИГ БНЦ АН СССР, идентифицированы разности радиоля­рий, характерные для Sil2-3. К. С.Ивановым и другими исследователями (ИГИГ УрО АН СССР) в интервале 3520-3885 м выделены и изучены ком­плексы конодонтов и хитинозой, позволяющие отнести его к пограничным слоям лландовери и венлока. Таким образом, находит подтверждение при­нятая предшественниками схема воз­растного расчленения вулканогенно-осадочных отложений района СГ-4.

Неожиданные результаты получены Ю. Е. Дмитровской (КамНИИКИГС) и А. Д. Архангельской (ВНИГНИ) при исследовании препаратов из мдцератов образцов туфоалевролитов интервала 1918,6-1983,9 м, где были обнаруже­ны неполные спектры спор, характер­ные для нижней части франского яру­са верхнего девона. Эти данные нуж­даются в тщательной проверке, для чего в районе СГ-4 начаты специальные исследования по ревизии извест­ных находок фауны.

6. Результаты геофизических исследований

Бурение СГ-4 сопровождается об­ширным комплексом геофизических исследований, включающим 28 методов электрического, сейсмоакустического, ядерно-физического, магнитного, тер­мического, газового и технико-техноло­гического каротажа. Существенных аномалий по результатам проведенных исследований не выявлено. Результаты ГИС наряду с литолого-петрографическими признаками использованы при расчленении разреза на слои, пачки, толщи.

По ряду физических параметров, за­фиксированных геофизическими исследованиями ствола и петрофизическими исследованиями керна, разрез дифференцирован в разной степени, что опре­деляется особенностями вещественного состава слагающих его образований,.различиями в степени их тектониче­ской и метаморфической переработки,. а также сложнонапряженным состоя­нием околоствольного массива.

После 10-месячного перерыва в бу­рении, обусловленного перемонтажом буровой установки, на глубине 3853 м установлена температура 60 °С, что от­вечает среднему значению геотермиче­ского градиента 1,5 °С на 100 м, и со­гласуется с особенностями поля дан­ной части Урала, характеризую­щейся низким значением теплового потока.

По результатам измере­ний плотности образцов керна СГ-4 хорошо видны вариации состава вулканитов разреза, в т. ч. обнаруживаются ритмы направ­ленных изменений этих параметров. На глубине 4000-2400 м такой ритм четко антидромный – вверх очень плавно растут плотности и основность вулканитов от риодацитового внизу ритма (2,65-2,75 г/см) до базальтового 2,85-2,95 г/cм, что независимо подтверждается и данными геохимического опробова­ния, а также согласованным нарастанием вверх на протяжении тех же 1600 м фоновой намагниченности пород (рис. 5).

На детальном разрезе плотностных вариаций четко устанавливается также положение контакта силицитов низов именновского комплекса и залегающих ниже внешне сходных алевропелитов кабанского комплекса: ему соответствует скачкооб­разное возрастание плотностей (состав сменяется вниз на базальтоидный). При этом в нижней (1 м) базальной части флишоидной толши плотности тех же силицитов, как оказа­лось, вниз с приближением к контакту прогрессивно возрас­тают, что обусловлено появлением во все большем количестве терригенной примеси материала размыва пород мафического основания. Это одно из объективных обоснований нормаль­ной седиментационной природы данного контакта – двух формаций двух стадий геодинамического цикла – офиолнтовой и постофиолитовой.

Породы по стволу СГ-4 в основном слабо намагничены. Выделяются на таком фоне различные дайки и интервалы по 5-30 м грубой пирокластики околожерловых фаций. Послед­ние выделяются в отличие от других туфов также обилием вулканических бомб и вишневых окисленных шлаковых ла-пиллей (инт. 1280-1315; 1986-2007; 2398-2460; 2494-2497 м и др.).

Приведенный на (рис. 5) скоростной разрез по СГ-4 показывает увеличение скоростей с глубиной: от 6 км/с вверху до 6,4 км/с ниже. Данные ВСП В. А.Силаева по стволу СГ-4 в деталях несколько иные. Сопоставления их с геологией показали, что в вариацияхVp значимы два фактора: состав пород – основной и средний (повышенные до 6,2-6,55 км/с) или же кислый – более низкие скоростные параметры (5,6-5,8 км/с). Усложняет картину резкими “провалами” в графике скоростей второй фактор – вариации степени тектонической нарушенности разреза. Вероятно, основная роль в этом принадлежит мелкой объемной трешиноватости, поскольку тектонические швы с более выраженной нарушенностью пород, но небольшой 2-5 м видимой мощностью (1918 м, 2506-2510 м и др.) в разных вариантах скоростного разреза ВСП не всегда проявляются. В основном же выделяются целики с максимальными для данного состав пород скоростями на протяжении до 600 м. С вариациями литологии корреляции нет (массивные туфы чередуются с пач­ками песчаных тефроидов того же и близкого составов), как и с вариациями состава от базальтового до андезитового. При этом плотности всех этих пород варьируют слабо – обычно от 2,82 до 2,88 г/см. Причина тому нивелирующее влияние повсеместного развития в туфовом материале метаморфогенной хлорит-пренитэпидотовой цементации. Она мало изменяет валовый состав пород, но сильно уменьшает их пористость (4-5% против 15-20% в кайнотипных базальтах, например. Камчатки) и повы­шает соответственно физические параметры плотности и, что особо важно, скоростные характеристики, создавая совер­шенно иную физическую среду по сравнению с молодыми вулканическими областями, где Vp в базальтовых разрезах мощностью до 5 км составляют 4,5-5,5 км/с (по Тюменской и Саатлинской сверхглубоким скважинам, на Камчатке, в Ислан­дии). По данным профилей МОВ-КМПВ, близ СГ-4 Vp в целиках практически с поверхности достигают 6 и 6,3 км/с. По результатам документации керна СГ-4, массивы пород в целиках монолитны, почти не трещиноваты, с выходом керна нередко 95-100% и длиной его кусков 50-80 см, иногда даже 2-4 м. Интенсивность вышеотмеченных метаморфических преобразо­ваний вулканитов с глубиной медленно нарастает, преобладающе землистые формы выделений сменяются ниже 3,5 км все лучше окристаллизованным эпидотом, что коррелируется с изменением некоторых физических параметров. Это также может иметь важ­ное значение в проблеме изучения теплопроводности и теплового потока по разрезу СГ-4. По изложенным причинам требуется постановка специальных детальных исследований по обозначен­ной проблематике. Помогут результаты их и в более точной реконструкции первичного химизма вулканитов разреза СГ-4.

Отметим, что разрез зеленосланцево – и более высоко метаморфизованных базальтов протерозоя Кольской СГ-3, при больших, чем в СГ-4 плотностях пород (вследствие большей их основности, до пикрит-базальтов), характеризуется близкими и большими Vp (6,5 и 6,8 км/с), которые снижаются до 5,8 км/с в разрезе осадочных пород ждановской свиты.

Высокоскоростные целики чередуются с интервалами с резко пониженными скоростями упругих волн и плотностей, видимо, зонами мелкой трешиноватости. Визуально в керне они невы­разительны, не имеют ясных границ и выделяются не всегда или неполно. Такие зоны наиболее выражены в интервалах 560-650;1800; 1850-1920; 2600-2750 м. Геологами некрупные, без милонитов, тектонические нарушения и зоны трещиноватости зафиксированы на глубинах 560-580; 1800; 2500-2510; 3480;3560 м. Предельно низкие Vp до 5,6 км/с присущи интервалам (3600-4300 м и др.), сложенным туфам и тефроидами кислого состава с плотностами около 2,75 г/см, вполне соответствую­щими составу пород и их скоростным характеристикам. Но на более поздних данных ВСП эта часть разреза по скоростям не выделилась.

Существуют и интерпретации, исходящие из того, что полученные для целиков на глубинах 1,2-3 км сейсмические скорости более 6,3 км/с слишком велики для андезитобазальто-вых вулканитов, даже уплотненных в результате метаморфиз­ма, и их следует связывать с повышенными значениями напряженного состояния в этих интервалах, чередующихся с таковыми тектонически разгруженного состояния, которые зачастую совпадают с интервалами повышенной динамичес­кой активности по данным сейсмоакустики. По данным глу­бинного сейсмоторпедирования (по В. А.Силаеву), для этих интервалов установлена скоростная анизотропия базальтоидов. Влияние последней и вариации напряженного состояния среды в связи с особенностями блоковой тектоники в каких-то частных проявлениях, безусловно, имеют место, в т. ч. создают большие сложности в проходке скважины (на глуби­нах 2500; 3700; 4980 м и др.), что делает их изучение и прогнозирование в подствольном пространстве по данным сейсмических зондирований особенно актуальными.

Данные сейсмоакустического каротажа (А. В.Троянов, 1997) в сопоставлении с другой геолого-геофизической информацией показывают, что по стволу выделяются целики с очень низкими шумами протяженностью чаще всего по 60-65; 130 и 200-230 м, на фоне которых выделяются отдельные узкие “шу­мящие” пики, в верхней части разреза чаще всего совпадающие с положением отражающих площадок на профиле ГСЗ (близ 850; 1700; 2005-2007 м), и/или с интервалами узких “провалов” в скоростном разрезе по ВСП, т. е. явно соответствуют тектони­чески ослабленным зонам, оказавшимся к тому же динамически активными в настоящее время (на 582-587;653-655; 834-848; 2175-2181; 2812-2882 м) либо же частота их встречаемости заметно повышена в широких интервалах пониженныхVp на 1025-1206; 1700-2185; 2600-2750; ниже 3480 м и др. Исклю­чение представляют интервалы (2500-2600 и 2730-3420 м), в которых наиболее высокие скорости сочетаются с частыми мощными зонами с интенсивными акустическими шумами; такая комбинация казалось бы несовместимых признаков (жест­кой, но тектонически нарушенной среды), возможно, как раз связана с тектонически напряженным состоянием этих блоков.

Изучение пластовых флюидов вклю­чало выяснение закономерностей изме­нения по разрезу состава газов и гид­рогеологические исследования.

Отбор газов производился как из ствола скважины, так и из образцов керна (газы открытых пор, глубокой сорбции). В результате установлено, что суммарное содержание газов уве­личивается с глубиной, достигая максимальных значений в интервале залег тания флишоидной толщи. Локальное увеличение газосодержания отмечено в зонах повышенной трещиноватости пород. В составе углеводородных га­дов разных форм нахождения домини­рует метан, концентрация его гомоло­гов на несколько порядков ниже. В пробах бурового раствора выявлено жезначительное содежание гелия (1,1–2,7-104 мл/л) с тенденцией к росту с глубиной и максимумом концентрации в трещиноватых, тектонически на­рушенных интервалах 2930-3080, 3450-3770 м (до 4,8-8,1.10-4 мл/л). В составе газово-жидких включений преобладает водород, в меньшем коли­честве содержатся метан и азот, содер­жание гелия незначительное.

Водоносные горизонты выявлялись на основе оперативного изучения ва­риаций химического состава промывочной жидкости и ее дифференциаль­ного расхода. Затем проводились спе­циальные исследования, обеспечивающие получение представительной про­бы пластового флюида и достоверных данных по пластовому давлению и емкостно-фильтрационным параметром водоносных горизонтов. Выяснено, что водоносные горизонты приурочены к донам интенсивной трещиноватости. Все опробованные водоносные горизонты до глубины 2553 м насыщены весьма пресной водой с минерализаци­ей менее 0,3 г/л, находящейся в условиях гидростатического давления. Специфика ее гидрохимического состава, .наряду с данными изотопных исследо­ваний, свидетельствует о ее метеорном происхождении. Результаты гидрогеологических и гидродинамических ис­следований свидетельствуют о значительной глубине распространения зон открытой трещиноватости.

При сопоставлении вскрытого сква­жиной разреза с результатами назем­ных сейсмических исследований уста­навливается, что практически все за­фиксированные вдоль оси скважины отражающие площадки (на глубинах 600, 1500, 2500, 2900, 3500 м) отвечают отмеченным выше крупным зонам тек­тонических нарушений и повышенной трещиноватости. При этом последняя из площадок совпадает с кровлей фли­шоидной толщи. Выявляется, что сей­сморазведка, чутко реагируя на раз­рывные дислокации и физическое со­стояние пород, слабо улавливает изме­нения в литологии разреза. Ответ на вопрос, что собой представляют установленные ниже по разрезу отражающие поверхности, можно получить только при дальнейшем углублении скважины. В этом плане показательно высказывание президента Международной программы “Литосфера” К. Фукса: “У нас есть тысячи километров профилей сейсмического отражения, но мы не знаем, что они показывают”.

В 1989 г. в рамках программы исследований на геотраверсе Уренгой-Верхняя Тура – Кривой Рог (“Гранит”) Баженовской геофизической экспедицией выполнены детализационные сейсмические наблюдения методом ре­гулируемого направленного возбужде­ния.

Характеризуя общее состояние ис­следований, следует отметить, что од­ной из наиболее острых проблем явля­ется выполнение предусмотренного программой комплекса исследований в околоскважинном пространстве, ко­торые пока ведутся в неполном объ­еме, без сопровождения структурного бурения достаточной координации. Не­обходимо ускорить обоснование и реа­лизацию геолого-геофизического (гео­динамического) полигона вокруг СГ-4.

В направлении повышения научной эффективности сверхглубокого буре­ния необходимо существенно усилий исследовательские возможности на са­мой скважине, особенно систематиче­ских замеров на больших глубинах флюидного трещинно-порового давле­ния и других гидродинамических пара­метров, оценки напряженного состоя­ния околоствольного массива, непре­рывной регистрации всех компонентов флюидной составляющей, совершенст­вования комплекса ГИС, ориентированного отбора керна с установлением палеомагнитных характеристик и др.

7. Сейсмическая информация по стволу и району СГ-4

Отражаю­щие элементы профилей ГСЗ и MOB не могут быть точно скоррелированны с геологией по стволу, поскольку скважина проходится, к сожалению, на удалении 1-1,5 км от профилей, авулканогенным разрезам присуща плохая выдержанность. Можно лишь утверж­дать, что подтвердилось общее моноклинальное строение разреза в верхней половине с углами падения слоев 45° на восток, что соответствует замерам слоистости в скальных обнажениях на по­верхности и по керну СГ-4. В прогнозном скоростном разрезе на основе дегализационных работ ГСЗ 1985 г. В. С.Дружинина были выделены и частные зоны инверсии скоростей, в т. ч. на глубинах 1500 и 2100 м. По ВСП, первый из них на фоне высокос­коростного интервала не выделен, но четко проявлен зоной дезин­теграции с резким уменьшением плотностей, а второй выделился зоной понижения скоростей до 5,9 км/с на глубине 2-2,2 км.

На прогнозном скоростном разрезе была выделена также зона инверсии скоростей на глубинах 6,3-7,5 км. Позднее методом вертикальных отражений в том же интервале зафиксирована среда с резко повышенной расслоенностью. Предположительно, она соответствует пачке осадочных пород низов ордовикской части палеозойского разреза. На профиле ОГТ ей соответст­вует на тех же глубинах система протяженных отражателей, имеющих слабое воздымание на восток и, судя по структурному рисунку, в 2 км восточное СГ-4 несогласно перекрываемых вышележащими базальтами, уже вскрытыми по СГ-4 (рис. 6). То есть объект на глубинах 6,3-6,7 км снова подтверждается. По­добная очень выдержанно распространенная ниже базальтов осадочная пачка, датированная фауной кародокского яруса ордовика, картируется на поверхности в западном борту Тагильско­го прогиба в 20 км западнее СГ-4. В связи с этим отметим, что один из важных результатов бурения СГ-4 до 5,4 км – установ­ленный факт, что для ордовикской части палеозойского разреза в районе СГ-4 остается очень узкий диапазон глубин, т. к. ниже 8-8,5 км, по данным ГСЗ, распространен явно иной комплекс (6,6-6,8 км/с, вероятно, амфиболитовых метаморфитов), хотя западнее мощности зеленосланцевых базальтов 02К-Оз и спилит-диабазового комплекса Оз-S1 достигают 6-8 км. Но во внутренней части Тагильского прогиба, где буритсяСГ-4, представляющей собой фланговую часть главной зоны базитового магматизма, на основе совместного рассмотрения геологической и геофизической информации прогнозируется резкое сокра­щение их суммарных мощностей примерно до 2 км и частич­ное замещение по латерали слоистыми отложениями удален­ных фаций. До бурения подобные точки зрения были мало обоснованными. Не исключается и вариант связи этого объ­екта с повышенной тектонической нарушенностью разреза на глубинах 6,3-7,5 км. Параметрическое значение будет иметь вскрытие этой части разреза бурением.

Интересна в рассматриваемых материалах выделенная на сейсмопрофиле MOB-ОГТ (1994-1995 гг.) сильная отражаю­щая граница, пересекающая проекцию ствола СГ-4 на глубине около 2900 м. Она имеет восточное падение, субсогласное с общим напластованием пород именновской свиты, но связывать ее с какими-либо вариациями литологии и фаций оснований нет. Для этого интервала характерно развитие грубых неминерализо­ванных трещин, по которым керн после подъема на поверхность распадается на блоки с ровными ограничениями; характерны также анизотропия физических свойств и пониженные скорости упругих волн, измеренных по керну и стволу скважины. Видимо, это сочетание признаков отвечает напряженному состоянию околоствольного массива, что косвенно подтверждается ослож­нениями бурения в пределах указанного интервала.

Позднее через уже пробуренную до глубины 5,3 км СГ-4 выполнен детальный профиль глубинного ОГТ по программе “Европроба”, на одном из вариантов разреза которого четко и непрерывно на протяжении 10-13 км прослеживаются парал­лельные друг другу два отражателя, маркирующие всю структуру района бурения СГ-4. По глубине они соответствуют наиболее мощным осадочным пачкам в верхней (на глубинах 3000-3300м) и нижней (4860-5072 м) частях флишоидной толщи разреза СГ-4 (см. рис.6). Отражатели вверху имеют наклон 45°, что соответст­вует отражающим элементам на Красноуральском профиле ГСЗ и ориентировке слоистости в обнажениях и по керну СГ-4, тогда как ниже 2,5 км слоисость по керну все более выполаживается до 10 и 5° на глубинах 4-5 км (см. рис.6). На профиле ОГТ характеризуемые отражатели также очень плавно выполаживаюгся с глубиной до горизонтальных залеганий восточное СГ-4, переходящих в полого западные в восточном конце профиля. Их легко можно было бы принять за таловые надвиги с горизонталь­ными базальными поверхностями. Но изучение разреза в пере­сечениях их стволом СГ-4 показало, что оба структурных элемен­та по природе соответствуют нормальным наслоениям. В данном случае СГ-4, вероятно, выполнила важнейшую параметрическую задачу определения геологической природы одного из типов протяженных субгоризонтальных отражателей в верхней коре – если принять, что приводимый разрез – адекватное отражение реальной среды (на том же информационном массиве отстроены и другие варианты). Предполагавшийся ранее вариант, что сис­тема пологих отложений может быть обусловлена боковыми отражениями от происходящего южнее параллельно профилю разлома – в принципе вероятен, но в данном случае сомнительно существование двух строго параллельных друг другу на протяже­нии 10 км разломов. Прослеживание профилем ОГТ распростра­нения глубоко погребенной слоистой толщи с достоверно уста­новленной бурением мощностью около 2 км – это, вероятнее всего, обычная фиксируемая методом ОГТ в осадочных бассей­нах сейсмостратиграфия. Неожиданность ее в сплошном вулканогенном массиве логично объяснима: данный разрез в отличие от всех смежных формировался при устойчивом морском режиме осадконакопления в локальном грабене, занимающем всю внутреннюю часть Тагильского прогиба. По данным ранее вы­полненного Ю. С.Каретиным, затем АИ. Глушковым с соавтора­ми картирования флишоидной толщи, размеры оконгуривающего грабен ареала ее распространения на поверхности 18х70 км. Были установлены и встречные направления падения слоистости в обоих бортах грабена при почта горизонтальных залеганиях слоев в перекрывающих толщах в его центральной части, в т. ч. в скважинах н а глубинах 700-1350 м (см. рис.6). То есть вариант профиля ОГТ согласуется с независимыми геологи­ческими данными. На нем нижний отражатель в западной при-бортовой части палеорифга становится прерывистым, неотчет­ливым, видимо, соответствует типовой картине развития нарушенности бортов большим количеством мелких сбросов, разви­вающихся в процессе растяжений и погружений днища палео­рифга. В случае нижнего отражателя восточнее СГ-4 вероятна совмещенность с осадочной пачкой послойной тектонической нарушенности. В керне это проявлено в виде дискования очень жестких силицитов в результате развития грубого по­слойного кливажа в зоне мощностью 5-8 м, расположенной на 2-3 м выше литологического контакта силицитов с массивны­ми тектоническими ненарушенными породами офиолитового основания. Видимые на том же профиле ОГТ системы встречно падающих мелких кососекущих разрывных нарушений местами дают четко видимые, но очень незначительные по амплитудам (10-20 м) смещения вышеупомянутых протяженных отражате­лей, и нигде до показанных на профиле глубин 12 км не дают крупных тектонических усложнений разреза.

На том же информационном массиве ОГТ получены и от­стройки, на которых описанные выше отражатели просматри­ваются фрагментарно, вследствие нарушенности их системами очень частых субпараллельных кососекущих нарушений, более всего похожие на системы грубого кливажа. Наиболее развитая из них – с западными падениями под углами 60-70°. Она отмечена ранее в скальных обнажениях площади.

По имеющимся в районе профилям ГСЗ, МПВ-МОВ и ОГТ, геологическую природу подавляющего большинства более ко­ротких палогопадающих отражающих элементов, в т. ч. отвечаю­щих границам крупных стратиграфических подразделений верх­ней части разреза коры, никому не удалось угадать по собствен­но сейсмической информации. Только бурение дало достовер­ные результаты. Геологическая природа и значимость многочис­ленных пологих и крутопадающих систем отражающих элемен­тов на детализаиионных профилях ГСЗ и на всех прочих в районе СГ-4 ясны из того, что они не нарушают заметным образом геологический разрез, а породы монолитны во всем объеме без проявлений рассланцевания и катаклаза. Поэтому несмотря на то, что многие из систем отражающих элементов имеют на сейсмопрофилях четкое выражение, большинство их, видимо, соответствуют лишь обычным в любом скальном мас­сиве системам трещиноватости и незначительным по амплиту­дам перемещений разрывам – их слишком много и они разно ориентированные, тогда как тектоническая структура в районе СГ-4 простая и, по геологическим данным, не имеет значитель­ных разломных усложнений.

На таком фоне по-новому выглядит проблема выделения по сейсмическим данным геологически значимых разломов и контактовых поверхностей разных толш и комплексов. Наиболее крупные выдержанные по распространенности структурно-вещественные мегакомплексы коры удается выделять и прослеживать достаточно уверенно только по совокупности данных, прежде всего, о скорост­ных параметрах среды, положению в общем разрезе коры, с учетом данных по отражающим элементам и геологии поверхности, по­скольку, как показал выполненный анализ всей системы профилей ГСЗ по Уралу, такие мегакомплексы характеризуются выдержан­ностью скоростных характеристик и их типовых вариаций. Оппоненты обычно указывают на различные неоднозначности вследствие влияния на физические параметры в коре вариаций давлений, напряженного состояния, флюидного режима и других трудно учитываемых факторов. Подобное влияние имеет место в частностях, но в целом интегральные скоростные характеристики крупных распространенных на больших пло­щадях единиц разреза определяются надежно, а их латераль­ные вариации закономерно согласуются с особенностями геологии поверхности.

Заключение

В числе наиболее важных результатов установлено :

Вскрытый разрез надежно, во всех деталях увязывается с геологией поверхности (рис. 4);

Установлена полная идентичность химизма главных типов базальтов выделенных формаций в разрезе СГ-4 и распростра­ненных на поверхности;

Отработка детального геохимического профиля в створе с СГ-4 показала, что афировые базальты бимодального комплекса разреза СГ-4 ниже 5075 м и картирующегося на поверхности в 4,5-7 км западнее СГ-4 вписываются в единую латеральную геохимическую зональность вместе с базальтами офиолитового спилит-диабазового комплекса оси палеоспрединга, трассиро­ванной в 10 км западнее СГ-4 , т. е. относятся к фланговым образованиям этой оси и по мере удаления от нее все более калиевые и богатые Ti, Fe;

Установлены целостность и закономерная направленность строения всего вскрытого разреза, ненарушенность его надвиговьми сдваиваниями и мощными разломными зонами с катаклазом и рассланцеванием пород;

Нормальным седиментационным оказался и вскрытый на глубине 5070 м контакт между риолит-андезитобазальтовым комплексом именновской свиты островодужного типа и залега­ющим ниже бимодальным комплексом офиолитового основа­ния;

Для оценок информативности данных геофизики о глубин­ном строении района важно, что мощность именновского ком­плекса 4-5 км была прогнозирована В. С.Дружининым на ос­нове скоростного разреза ГСЗ, тогда как геологические прогнозы давали вдвое меньшие мощности. Подтвердились для этой части разреза и прогнозные по ГСЗ интегральные скорост­ные характеристики среды – 6,1 км/с, что оказалось близким измеренным значениям. Мощность палеозойского вулканогенно-осадочного разреза в районе СГ-4, по данным ГСЗ, прогно­зируется 7,5-8 км;

Более широкими исследованиями в районе в строении земной коры Тагильской структуры установлено развитие внижней ее части линзы типа “коромантийской смеси” (К-М) мощностью 15-20 км, сочетающееся с утонченностью собст­венно кристаллической (без К-М) части коры – 28-33 км против 37-40 км в бортах.

Оценивая первые результаты буре­ния Уральской СГ-4, необходимо под­черкнуть, что главные задачи решают­ся на средних и нижних интервалах бурения. Уже сейчас, достигнув ре­кордной для рудных районов Урала глубины и обеспечив уникальную возможность непрерывного детального изучения разреза толщиной 4 км, СГ-4 дала ряд принципиально новых дан­ных, касающихся верхней части Та­гильского прогиба. Так, установлено более крутое залегание вулканогенно осадочных комплексов западного крыла прогиба с значительным превыше­нием проектной мощности. Получены новые факты, касающиеся возраста, фациальных условий и геодинамиче­ской обстановки формирования вскры­той части разреза. Изучен цикличе­ский характер вулканизма древней островной дуги и установлены его от­личия от современных аналогов. Выяв­лены закономерности метаморфиче­ских преобразований и особенности распределения в разрезе рудной мине­рализации. Впервые для этой части Урала получена достоверная информа­ция по физическим свойствам, текто­нической нарушенности, флюидонасыщенности и геотермическому режиму такого протяженного по глубине раз­реза, что дало возможность объектив­но оценить эффективность методов на­земной геофизики, в частности, устано­вить природу сейсмических отражаю­щих площадок.

Скважина практически вплотную по­дошла к решению ряда приоритетных фундаментальных и прикладных про­блем. Уже на ближайших интервалах проходки предстоит вскрытие горизон­тов, отвечающих стратиграфическому уровню расположенных поблизости медноколчеданных месторождений. Да­лее решение принципиальных вопро­сов по выяснению структурной пози­ции, составу и рудоносности образова­ний Платиноносного пояса, цикла байкалид, зон инверсии скоростей (волно­водов) и др.

Необходимо подчеркнуть, что СГ-4 не нацелена на непосредственное вскрытие конкретных промышленно значимых рудных объектов. Ее задачи в этом направлении более широки – уловить дыхание рудообразующих про­цессов, определить их направленность, установить новые глубинные критерии минерагенического прогноза. Сообраз­но общим задачам, стоящим перед глу­бинными исследованиями рудообразующих систем, это будет иметь важное значение для их реконструк­ции и способствовать построению об­щей модели рудогенеза.

Установив стратиграфическую непре­рывность или тектоническую разоб­щенность и скученность вскрываемого разреза, проходка скважины обеспечит (на примере Урала) проверку альтер­нативных моделей геотектонического развития. В итоге Уральская СГ-4 по­зволит впервые в мире получить достоверные факты о глубинном строении, рудоносности, эволюции и геодинами­ческой природе палеозойских подвижных поясов континентов. Использова­ние полученных результатов должно обеспечить прорыв геологических ис­следований на более высокий научный уровень.­

Петрофизический разрез СГ-4

Рис.5.

Профиль глубинного ОГТ

Ось гравиметрической аномалии

Рис.6.

1-кабанский комплекс; ll-именновская свита; lll-гороблагодатная толща; lv-туринская свита; v-Красноуральская зона.

Содержание

Введение

1.Геологическое строение района заложения скважины СГ-4

2.Цели и задачи СГ-4

3.Прогнозные модели Уральской СГ-4

4. Геологический разрез СГ-4

5. Петрографическая характеристика горных пород

6. Результаты геофизических исследований

7. Сейсмическая информация по стволу СГ-4

Заключение

Литература

Литература

1. Башта К. Г., Горбачев В. И., Задачи и первые результаты бурения Уральской сверхглубокой скважины // Советская геология 1991.N 8. С.51-63.

2. Башта К. Г.,МарченкоА. И., Использование результатов бурения и исследований Уральской сверхглубокой скважины СГ-4 при региональных исследованиях // 100 лет Геологического картографирования на Урале. Екатеринбург,1997. С 211-220.

3. Дружинин В. С.,Каретин Ю. С., Детальные сопоставления наземной и скважинной информации по району Уральской сверхглубокой скважины // Отечественная геология.1999.N 5. С.42-48.

4. Румянцева Н. А.,и др., Уральская СГС // Сверхглубокие скважины России и сопредельных районов. С.96-118.



Зараз ви читаєте: Обзор геолого-геофизической изученности района Уральской сверхглубокой скважины СГ-4