Оптимизация процессов бурения скважин

ГОСУДАРСТВЕННЫЙ ГЕОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра Бурения

КУРСОВАЯ РАБОТА

По курсу:

Оптимизация процессов бурения скважин

2005г.

Исходные данные

1

3,5

1

4,0

2

4,1

2

4,2

3

4,0

3

4,1

4

4,2

4

0,3

5

3,8

5

0,5

6

1,0

6

5,2

7

0,9

7

5,0

8

3,9

8

3,9

9

4,2

9

3,8

10

4,1

10

4,2

11

4,0

11

4,3

12

14,3

12

4,4

13

14,0

14

13,7

Оптимизация процесса бурения возможна по критериям максимальной механической скорости проходки, максимальной рейсовой скорости бурения и стоимости 1 метра проходки, а также по вопросам оптимальной отработки долота при его сработке по вооружению, опоре или по диаметру. Наша задача при этом сводится к нахождению оптимальной механической скорости проходки для осуществления процесса бурения скважин на оптимальном режиме. В данном решении предполагается, что проведены испытания в идентичных горно-геологических условиях и с одинаковыми режимами.

Выборка №1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

3,5

4,1

4,0

4,2

3,8

1,0

0,9

3,9

4,2

4,1

4,0

14,3

14,0

13,7

Выборка №2

1

2

3

4

5

6

7

8

9

10

11

12

4,0

4,2

4,1

0,3

0,5

5,2

5,0

3,9

3,8

4,2

4,3

4,4

1. Расчет средней величины.

,

2. Расчет дисперсии

,

Выборка №1.

Выборка №2.

3. Расчет среднеквадратичной величины.

,

Выборка №1

Выборка №2

4. Расчет коэффициента вариации

,

Выборка №1

Выборка №2

5. Определение размаха варьирования

,

Выборка №1

Выборка №2

6. Отбраковка непредставительных результатов измерений.

Метод 3 s:

Выборка №1

Значения выборки 1 не выходят за границы критического интервала отбраковки.

Выборка №1

Выборка №2

1

3,5

0,0324

1

4,0

0,01265625

2

4,1

0,1764

2

4,2

0,00765625

3

4,0

0,1024

3

4,1

0,00015625

4

4,2

0,2704

4

3,9

0,04515625

5

3,8

0,0144

5

3,8

0,09765625

6

1,0

7,1824

6

4,2

0,00765625

7

3,9

0,0484

7

4,3

0,03515625

8

4,2

0,2704

8

4,4

0,08265625

9

4,1

0,1764

10

4,0

0,1024

Среднее значение

3,68

8,376

Среднее значение

4,1125

0,28875625

Дисперсия

0,93

Дисперсия

0,04

Выборка №2

Значения выборки 2 не выходят за границы критического интервала отбраковки.

Метод Башинского:

,

Где

– коэффициент Башинского;

– размах варьирования.

Выборка №1

Значения выборки 1 выходят за границы критического интервала отбраковки.

Выборка №2

Значения выборки 2 выходят за границы критического интервала отбраковки.

В выборке №1 и №2 по методу Башинского значение выборки вышло за границы критического интервала отбраковки, поэтому и подлежат отбраковки. Теперь пересчитаем среднюю величину для обоих выборок.

7. Расчет средней величины

8. Расчет дисперсии

Выборка №1

Выборка №2

1

3,5

2,343961

1

4,0

0,0016

2

4,1

0,866761

2

4,2

0,0576

3

4,0

1,062961

3

4,1

0,0196

4

4,2

0,690561

4

0,5

11,9716

5

3,8

1,515361

5

5,2

1,5376

6

1,0

16,248961

6

5,0

1,0816

7

0,9

17,065161

7

3,9

0,0036

8

3,9

1,279161

8

3,8

0,0256

9

4,2

0,690561

9

4,2

0,0576

10

4,1

0,866761

10

4,3

0,1156

11

4,0

1,062961

11

4,4

0,1936

12

14,0

80,442961

13

13,7

75,151561

Среднее значение

5,031

199,287693

Среднее значение

3,96

15,0656

Дисперсия

16,60730775

Дисперсия

1,50656

9. Расчет среднеквадратичной величины

10.Расчет коэффициента вариации.

11. Определение размаха варьирования

12.Отбраковка непредставительных результатов измерений.

Метод 3 s:

Выборка №1

Значения выборки 1 не выходят за границы критического интервала отбраковки.

Выборка №2

Значения выборки 2 не выходят за границы критического интервала отбраковки.

Метод Башинского:

Выборка №1

Значения выборки 1 выходят за границы критического интервала отбраковки.

Выборка №2

Значения выборки 2 выходят за границы критического интервала отбраковки.

В выборке №1 и №2 по методу Башинского значение выборки вышло за границы критического интервала отбраковки, поэтому и подлежат отбраковки. Теперь пересчитаем среднюю величину для обоих выборок.

13.Расчет средней величины

Выборка №1

Выборка №2

1

3,5

0,6084

1

4,0

0,0961

2

4,1

0,0324

2

4,2

0,0121

3

4,0

0,0784

3

4,1

0,0441

4

4,2

0,0064

4

5,2

0,7921

5

3,8

0,2304

5

5,0

0,4761

6

1,0

10,7584

6

3,9

0,1681

7

0,9

11,4244

7

3,8

0,2601

8

3,9

0,1444

8

4,2

0,0121

9

4,2

0,0064

9

4,3

0,0001

10

4,1

0,0324

10

4,4

0,0081

11

4,0

0,0784

12

13,7

88,7364

Среднее значение

4,28

112,1368

Среднее значение

4,31

1,869

Дисперсия

10,194

Дисперсия

0,2076

14.Расчет дисперсии

15. Расчет среднеквадратичной величины.

16. Расчет коэффициента вариации.

17. Определение размаха варьирования.

18.Отбраковка непредставительных результатов измерений.

Метод 3 s:

Выборка №1

Значения выборки 1 не выходят за границы критического интервала отбраковки.

Выборка №2

Значения выборки 2 не выходят за границы критического интервала отбраковки.

Метод Башинского:

Выборка №1

Значения выборки 1 выходят за границы критического интервала отбраковки.

Выборка №2

Значения выборки 2 выходят за границы критического интервала отбраковки.

В выборке №1 и №2 по методу Башинского значение выборки вышло за границы критического интервала отбраковки, поэтому и подлежат отбраковки. Теперь пересчитаем среднюю величину для обоих выборок.

19. Расчет средней величины

Выборка №1

Выборка №2

1

3,5

0,005329

1

4,0

0,0441

2

4,1

0,452929

2

4,2

0,0001

3

4,0

0,328329

3

4,1

0,0121

4

4,2

0,597529

4

5,0

0,6241

5

3,8

0,139129

5

3,9

0,0961

6

1,0

5,890329

6

3,8

0,1681

7

0,9

6,385729

7

4,2

0,0001

8

3,9

0,223729

8

4,3

0,0081

9

4,2

0,597529

9

4,4

0,0361

10

4,1

0,452929

11

4,0

0,328329

Среднее значение

3,427

15,401819

Среднее значение

4,21

0,9889

Дисперсия

1,5401819

Дисперсия

0,1236125

20.расчет дисперсии

21. Расчет среднеквадратичной величины

22. Расчет коэффициента вариации

23. Определение размаха варьирования

24. Отбраковка непредставительных результатов измерений.

Метод 3 s:

Выборка №1

Значения выборки 1 не выходят за границы критического интервала отбраковки.

Выборка №2

Значения выборки 2 не выходят за границы критического интервала отбраковки.

Метод Башинского:

Выборка №1

Значения выборки 1 выходят за границы критического интервала отбраковки.

Выборка №2

Значения выборки 2 выходят за границы критического интервала отбраковки.

В выборке №1 и №2 по методу Башинского значение выборки вышло за границы критического интервала отбраковки, поэтому и подлежат отбраковки. Теперь пересчитаем среднюю величину для обоих выборок.

25. Расчет средней величины

Выборка №1

Выборка №2

1

3,5

0,0324

1

4,0

0,01265625

2

4,1

0,1764

2

4,2

0,00765625

3

4,0

0,1024

3

4,1

0,00015625

4

4,2

0,2704

4

3,9

0,04515625

5

3,8

0,0144

5

3,8

0,09765625

6

1,0

7,1824

6

4,2

0,00765625

7

3,9

0,0484

7

4,3

0,03515625

8

4,2

0,2704

8

4,4

0,08265625

9

4,1

0,1764

10

4,0

0,1024

Среднее значение

3,68

8,376

Среднее значение

4,1125

0,28875625

Дисперсия

0,93

Дисперсия

0,04

26. Расчет дисперсии

27. Расчет среднеквадратичной величины.

28. Расчет коэффициента вариации

29. Определение размаха варьирования.

30. Отбраковка непредставительных результатов измерений.

Метод 3 s:

Выборка №1

Значения выборки 1 не выходят за границы критического интервала отбраковки.

Выборка №2

Значения выборки 2 не выходят за границы критического интервала отбраковки.

Метод Башинского:

Выборка №1

Значения выборки 1 выходят за границы критического интервала отбраковки.

Выборка №2

Значения выборки 2 не выходят за границы критического интервала отбраковки.

В выборке №1 по методу Башинского значение выборки вышло за границы критического интервала отбраковки, поэтому подлежит отбраковки. Теперь пересчитаем среднюю величину для выборки №1.

31.Расчет средней величины.

Выборка №1

Выборка №2

1

3,5

0,2282716

1

4,0

0,01265625

2

4,1

0,0149382

2

4,2

0,00765625

3

4,0

0,0004938

3

4,1

0,00015625

4

4,2

0,0493827

4

3,9

0,04515625

5

3,8

0,0316049

5

3,8

0,09765625

6

3,9

0,0060494

6

4,2

0,00765625

7

4,2

0,0493827

7

4,3

0,03515625

8

4,1

0,0149382

8

4,4

0,08265625

9

4,0

0,0004938

Среднее значение

3,97

0,395555

Среднее значение

4,1125

0,28875625

Дисперсия

0,049

Дисперсия

0,04

32.Расчет дисперсии.

33. Расчет среднеквадратичной величины.

34. Расчет коэффициента вариации.

35. Определение размаха варьирования.

36. Отбраковка непредставительных результатов измерений.

Метод 3 s:

Выборка №1

Метод Башинского:

Выборка №1

Значения выборки 1 выходят за границы критического интервала отбраковки.

В выборке №1 по методу Башинского значение выборки вышло за границы критического интервала отбраковки, поэтому подлежит отбраковки. Теперь пересчитаем среднюю величину для выборки №1.

37. Расчет средней величины.

Выборка №1

Выборка №2

1

4,1

1

4,0

0,01265625

2

4,0

2

4,2

0,00765625

3

4,2

3

4,1

0,00015625

4

3,8

4

3,9

0,04515625

5

3,9

5

3,8

0,09765625

6

4,2

6

4,2

0,00765625

7

4,1

7

4,3

0,03515625

8

4,0

8

4,4

0,08265625

Среднее значение

4,0375

Среднее значение

4,1125

0,28875625

Дисперсия

Дисперсия

0,04

38. Расчет дисперсии.

39. Расчет среднеквадратичной величины.

40. Расчет коэффициента вариации.

41. Определение размаха варьирования.

42. Отбраковка непредставительных результатов измерений.

Метод 3 s:

Выборка №1

Метод Башинского:

Выборка №1

Значения выборки 1 выходят за границы критического интервала отбраковки.

43. Определение предельной относительной ошибки испытаний.

Выборка №1

Выборка №2

44. Проверка согласуемости экспериментальных данных с нормальным законом распределения при помощи критерия Пирсона.

Интервал

Среднее значение

Частота

1

3,8 – 3,9

3,85

1

2

3,9 – 4,0

3,95

3

3

4,0 – 4,1

4,05

2

4

4,1 – 4,2

4,15

2

Выборка №1 Определим количество интервалов:

Где – размер выборки 1

1. Сравнение с теоретической кривой.

– параметр функции

Где

– среднее значение на интервале;

2. Рассчитываем для каждого интервала

– функция плотности вероятности нормально распределения;

3. Расчет теоретической частоты.

– теоретическая частота в i-том интервале.

1

3,85

1

-1,332

0,1647

0,9364

0,0040

0,004

2

3,95

3

-0,622

0,3292

1,8717

1,2730

0,680

3

4,05

2

0,088

0,3977

2,2612

0,0682

0,030

4

4,15

2

0,799

0,2920

1,6603

0,3397

0,204

Число подчиняется – закону Пирсона

– число степеней свободы;

– порог чувствительности;

– вероятность;

Если , то данные эксперимента согласуются с нормальным законом распределения, где – табличное значение критерия Пирсона.

Если – данные эксперимента не согласуются с нормальным законом распределения, необходимо дальнейшее проведение опытов. Поскольку вычисленное значение () превосходит табличное значение критерия Пирсона, то данные эксперимента не согласуются с нормальным законом распределения.

Выборка №2

Определим количество интервалов:

, где – размер выборки 2

Интервал

Среднее значение

Частота

1

3,8 – 3,95

3,875

2

2

3,95 – 4,10

4,025

2

3

4,10- 4,25

4,175

3

4

4,25 – 4,4

4,325

2

1. Сравнение с теоретической кривой.

– параметр функции , где

– среднее значение на интервале;

2. Рассчитываем для каждого интервала

– функция плотности вероятности нормально распределения;

3. Расчет теоретической частоты.

– теоретическая частота в i-том интервале.

1

3,88

2

-1,1694

0,2012

1,1887

0,6582

0,5537

2

4,04

2

-0,4310

0,3637

2,1489

0,0222

0,0103

3

4,2

3

0,3077

0,3814

2,2535

0,5572

0,2473

4

4,34

2

1,0460

0,2323

1,3725

0,3937

0,2869

– число степеней свободы;

– порог чувствительности;

– вероятность;

Если , то данные эксперимента согласуются с нормальным законом распределения, где – табличное значение критерия Пирсона.

Если – данные эксперимента не согласуются с нормальным законом распределения, необходимо дальнейшее проведение опытов. Поскольку вычисленное значение () превосходит табличное значение критерия Пирсона, то данные эксперимента не согласуются с нормальным законом распределения.

45. Определение доверительного интервала

Форма распределения Стьюдента зависит от числа степеней свободы.

Где коэффициент Стьюдента

Выборка №1

Где – при вероятности и числе опытов .

Выборка №2

Где – при вероятности и числе опытов .

Доверительные интервалы

Выборка №1

Интервал 3,945 – 4,0375 – 4,13.

46.Дисперсионный анализ

Основной целью дисперсионного анализа является исследование значимости различия между средними. В нашем случае мы просто сравниваем средние в двух выборках. Дисперсионный анализ даст тот же результат, что и обычный – критерий для зависимых выборок (сравниваются две переменные на одном и том же объекте).

– критерий Фишера

для и

– различие между дисперсиями несущественно, необходимо дополнительное исследование.

Проверим существенность различия и по – критерию для зависимых выборок.

при и

– различие между средними величинами существенно.

Проверим по непараметрическому Т – критерию:

, где

,

Разница между средними величинами несущественна.


Зараз ви читаєте: Оптимизация процессов бурения скважин