Характеристика углеводородов

ДИЕНОВЫЕ УГЛЕВОДОРОДЫ (АЛКАДИЕНЫ)

Диеновые углеводороды или алкадиены – это непредельные углеводороды, содержащие две двойные углерод – углеродные связи. Общая формула алкадиенов Cn H2n-2 . В зависимости от взаимного расположения двойных связей диены подразделяются на три типа:

1) углеводороды с кумулированными двойными связями, т. е. примыкающими к одному атому углерода. Например, пропадиен или аллен CH2 =C=CH2 ;

2) углеводороды с изолированными двойными связями, т. е разделенными двумя и более простыми связями. Например, пентадиен -1,4 CH2 =CH-CH2 – CH=CH2 ;

3) углеводороды с сопряженными двойными связями, т. е. разделенными одной простой связью. Например, бутадиен -1,3 или дивинил CH2 =CH-CH=CH2 , 2-метилбутадиен -1,3 или изопрен

CH2 =С-CH=CH2 . I CH3

Получение

1) дегидрированием алканов, содержащихся в природном газе и газах нефтепереработки, при пропускании их над нагретым катализатором

CH3 – CH2 – CH2 – CH3 –~600°С;Cr2O3,Al2O3 ® CH2 =CH-CH=CH2 + 2H2

CH3 –CH-CH2 – CH3 –~600°С;Cr2O3,Al2O3 ® CH2 = I CH3C-CH=CH2 + 2H2 I CH3

2) дегидрированием и дегидратацией этилового спирта при пропускании паров спирта над нагретыми катализаторами (метод акад. С. В. Лебедева)

2CH3 CH2 OH –~450°С;ZnO, Al2O3 ® CH2 =CH-CH=CH2 + 2H2 O + H2

Физические свойства

Химические свойства

Атомы углерода в молекуле бутадиена-1,3 находятся в sp2 – гибридном состоянии, что означает расположение этих атомов в одной плоскости и наличие у каждого из них одной p – орбитали, занятой одним электроном и расположенной перпендикулярно к упомянутой плоскости.

a) b)
Схематическое изображение строения молекул дидивинила (а) и вид модели сверху (b). Перекрывание электронных облаков между С1 – С2 и С3 – С4 больше, чем между С2 – С3 .

P – Орбитали всех атомов углерода перекрываются друг с другом, т. е. не только между первым и вторым, третьим и четвертым атомами, но и также между вторым и третьим. Отсюда видно, что связь между вторым и третьим атомами углерода не является простой s – связью, а обладает некоторой плотностью p – электронов, т. е. слабым характером двойной связи. Это означает, что s – электроны не принадлежат строго определенным парам атомов углерода. В молекуле отсутствуют в классическом понимании одинарные и двойные связи, а наблюдается делокализация p – электронов, т. е. равномерное распределение p – электронной плотности по всей молекуле с образованием единого p – электронного облака. Взаимодействие двух или нескольких соседних p – связей с образованием единого p – электронного облака, в результате чего происходит передача взаимовлияния атомов в этой системе, называется эффектом сопряжения. Таким образом, молекула бутадиена -1,3 характеризуется системой сопряженных двойных связей. Такая особенность в строении диеновых углеводородов делает их способными присоединять различные реагенты не только к соседним углеродным атомам (1,2- присоединение), но и к двум концам сопряженной системы (1,4- присоединение) с образованием двойной связи между вторым и третьим углеродными атомами. Отметим, что очень часто продукт 1,4- присоединения является основным. Рассмотрим реакции галогенирования и гидрогалогенирования сопряженных диенов.

Полимеризация диеновых соединений

В упрощенном виде реакцию полимеризации бутадиена -1,3 по схеме 1,4 присоединения можно представить следующим образом:

—-® .

В полимеризации участвуют обе двойные связи диена. В процессе реакции они разрываются, пары электронов, образующие s – связи разобщаются, после чего каждый неспаренный электрон участвует в образовании новых связей: электроны второго и третьего углеродных атомов в результате обобщения дают двойную связь, а электроны крайних в цепи углеродных атомов при обобщении с электронами соответствующих атомов другой молекулы мономера связывают мономеры в полимерную цепочку.

Элементная ячейка полибутадиена представляется следующим образом :

.

Как видно, образующийся полимер характеризуется транс – конфигурацией элементной ячейки полимера. Однако наиболее ценные в практическом отношении продукты получаются при стереорегулярной (иными словами, пространственно упорядоченной) полимеризации диеновых углеводородов по схеме 1,4- присоединения с образованием цис – конфигурации полимерной цепи. Например, цис – полибутадиен

.

Натуральный и синтетический каучуки

Натуральный каучук получают из млечного сока (латекса) каучуконосного дерева гевеи, растущего в тропических лесах Бразилии.

При нагревании без доступа воздуха каучук распадается с образованием диенового углеводорода – 2- метилбутадиена-1,3 или изопрена. Каучук – это стереорегулярный полимер, в котором молекулы изопрена соединены друг с другом по схеме 1,4- присоединения с цис – конфигурацией полимерной цепи :

Молекулярная масса натурального каучука колеблется в пределах от 7. 104 до 2,5. 106 .

Транс – Полимер изопрена также встречается в природе в виде гуттаперчи.

Натуральный каучук обладает уникальным комплексом свойств: высокой текучестью, устойчивостью к износу, клейкостью, водо – и газонепроницаемостью. Для придания каучуку необходимых физико-механических свойств: прочности, эластичности, стойкости к действию растворителей и агрессивных химических сред – каучук подвергают вулканизации нагреванием до 130-140°С с серой. В упрощенном виде процесс вулканизации каучука можно представить следующим образом :

Атомы серы присоединяются по месту разрыва некоторых двойных связей и линейные молекулы каучука “сшиваются” в более крупные трехмерные молекулы – получается резина, которая по прочности значительно превосходит невулканизированный каучук. Наполненные активной сажей каучуки в виде резин используют для изготовления автомобильных шин и других резиновых изделий.

В 1932 году С. В. Лебедев разработал способ синтеза синтетического каучука на основе бутадиена, получаемого из спирта. И лишь в пятидесятые годы отечественные ученые осуществили каталитическую стереополимеризацию диеновых углеводородов и получили стереорегулярный каучук, близкий по свойствам к натуральному каучуку. В настоящее время в промышленности выпускают каучук,

В котором содержание звеньев изопрена, соединенных в положении 1,4, достигает 99%, тогда как в натуральном каучуке они составляют 98%. Кроме того, в промышленности получают синтетические каучуки на основе других мономеров – например, изобутилена, хлоропрена, и натуральный каучук утратил свое монопольное положение.


Зараз ви читаєте: Характеристика углеводородов