Экономико-математические методы


Задача 1

В базе данных магазина, торгующего подержанными автомобилями, содержится информация об их потребительских свойствах и ценах.

Для анализа зависимости цены автомобиля Y от его возраста X1 и мощности двигателя X2 из базы данных выбраны сведения о 16 автомобилях. Эти сведения приведены в таблице 1.

Таблица 1

Номер автомобиля i

Цена (тыс. у.е.) y i

Возраст (лет) x i 1

Мощность двигателя (л. с.) x i 2

1

6,8

6,0

93

2

7,2

4,0

67

3

4,3

6,0

57

4

10,0

4,0

106

5

9,7

5,0

108

6

12,4

4,0

136

7

12,9

4,0

143

8

6,6

7,0

127

9

11,2

3,0

93

10

11,2

4,0

111

11

8,3

6,0

124

12

5,6

6,0

81

13

5,6

6,0

71

14

6,4

6,0

88

15

5,3

7,0

112

16

4,0

7,0

88

2. Множественная зависимость

С помощью коэффициентов парной корреляции проанализировать тесноту линейной связи между ценой и возрастом автомобиля, а также между ценой и мощностью двигателя. Проверить их значимость с надежностью 0,9.

Методом наименьших квадратов найти оценки коэффициентов множественной линейной регрессионной модели

.

Проверить статистическую значимость параметров и уравнения множественной регрессии с надежностью 0,9.

Рассчитать точечный и интервальный прогноз среднего значения цены поступивших автомобилей возраста 3 года и мощностью двигателя 165 л. с. с доверительной вероятностью 0,95.

3. Экономическая интерпретация

На основе полученных статистических характеристик провести содержательный экономический анализ зависимости цены автомобиля от его возраста и мощности двигателя.

Расчетная таблица:

Y

X1

X2

X12

X22

Y*x1

Y*x2

Y2

X1 x2

1

6,8

6

93

36

8649

40,8

632,4

46,2

558

2

7,2

4

67

16

4489

28,8

482,4

51,8

268

3

4,3

6

57

36

3249

25,8

245,1

18,5

342

4

10,0

4

106

16

11236

40,0

1060,0

100,0

424

5

9,7

5

108

25

11664

48,5

1047,6

94,1

540

6

12,4

4

136

16

18496

49,6

1686,4

153,8

544

7

12,9

4

143

16

20449

51,6

1844,7

166,4

572

8

6,6

7

127

49

16129

46,2

838,2

43,6

889

9

11,2

3

93

9

8649

33,6

1041,6

125,4

279

10

11,2

4

111

16

12321

44,8

1243,2

125,4

444

11

8,3

6

124

36

15376

49,8

1029,2

68,9

744

12

5,6

6

81

36

6561

33,6

453,6

31,4

486

13

5,6

6

71

36

5041

33,6

397,6

31,4

426

14

6,4

6

88

36

7744

38,4

563,2

41,0

528

15

5,3

7

112

49

12544

37,1

593,6

28,1

784

16

4,0

7

88

49

7744

28,0

352,0

16,0

616

Сумма

127,5

85

1605

477

170341

630,2

13510,8

1141,9

8444

Коэффициенты парной корреляции:

= = -0,833

= = 0,665

Проверка значимости:

(по таблице).

= 5,63 > 1,761

= 3,33 > 1,761

Коэффициенты корреляции существенно отличаются от 0.

Найдем матрицы:

=

=

Найдем матрицу , обратную к матрице . Определитель

|XT X| = 16 * 477 * 170341 + 85 * 8444 * 1605 + 1605 * 85 * 8444 – 1605 * 477 * 1605 – 85 * 85 * 170341 – 16 * 8444 * 8444 = 3692086

Алгебраические дополнения:

D11 = (-1)1 + 1 = 477 * 170341 – 84442 = 9951521 и т. д.

Матрица алгебраических дополнений

=

Присоединенная матрица

(XT X)* = DT = = D

(матрица D симметрична).

(XT X)-1 = (XT X)* / |XT X| = =

Вектор оценок коэффициентов модели:

A = (XT X)-1 (XT Y) = =

Y = 10,455 – 1,650×1 + 0,063×2

Расчетная таблица:

Y

X1

X2

Y –

(y – )2

Y –

(y – )2

1

6,8

6,0

93,0

6,38

0,42

0,179

-1,2

1,4

2

7,2

4,0

67,0

8,05

-0,85

0,721

-0,8

0,6

3

4,3

6,0

57,0

4,12

0,18

0,031

-3,7

13,5

4

10,0

4,0

106,0

10,49

-0,49

0,241

2,0

4,1

5

9,7

5,0

108,0

8,97

0,73

0,539

1,7

3,0

6

12,4

4,0

136,0

12,37

0,03

0,001

4,4

19,6

7

12,9

4,0

143,0

12,81

0,09

0,009

4,9

24,3

8

6,6

7,0

127,0

6,86

-0,26

0,065

-1,4

1,9

9

11,2

3,0

93,0

11,33

-0,13

0,016

3,2

10,4

10

11,2

4,0

111,0

10,80

0,40

0,157

3,2

10,4

11

8,3

6,0

124,0

8,32

-0,02

0,000

0,3

0,1

12

5,6

6,0

81,0

5,63

-0,03

0,001

-2,4

5,6

13

5,6

6,0

71,0

5,00

0,60

0,361

-2,4

5,6

14

6,4

6,0

88,0

6,06

0,34

0,113

-1,6

2,5

15

5,3

7,0

112,0

5,92

-0,62

0,379

-2,7

7,1

16

4,0

7,0

88,0

4,41

-0,41

0,171

-4,0

15,8

Сумма

127,5

2,985

125,9

Остаточная дисперсия

S2 = ∑ (yi – I )2 / (n – m – 1) = 2,985 / (16 – 2 – 1) = 0,230

Ковариационная матрица:

S2 (XT X)-1 = 0,230 * =

Стандартные ошибки коэффициентов равны квадратным корням из диагональных элементов ковариационной матрицы:

S0 = = 0,787

S1 = = 0,096

S2 = = 0,005

Проверим значимость параметров регрессии.

Табличное значение

T1 – α/2, n – 3 = 1,77

T0 = |a0 | / S0 = 10,455 / 0,787 = 13,3 > 1,77

T1 = |a1 | / S1 = 1,650 / 0,096 = 17,1 > 1,77

T2 = |a2 | / S2 = 0,063 / 0,005 = 12,4 > 1,77

Все параметры значимы.

Коэффициент детерминации

= 1 – 2,985 / 125,9 = 0,976

Табличное значение критерия Фишера

Fт = 3,8

Расчетное значение

Fф = = = 267,7 > 3,8

Уравнение значимо.

Точечный прогноз:

(xp ) = 10,455 – 1,650 * 3 + 0,063 * 165 = 15,83 тыс. у. е.

Интервальный прогноз

Квантиль распределения Стьюдента (по таблице)

= t0,975; 13 = 2,16

Где S = = = 0,479

Xp (XT X)-1 (xp )T = = = 0,633

= 0,479 * = 0,381

В, Н = 15,83 ± 2,16 * 0,381 = 15,83 ± 0,68

Н = 15,15

В = 16,51

3. Экономическая интерпретация. Между возрастом автомобиля и его ценой существует тесная отрицательная связь (коэффициент корреляции -0,833): при увеличении возраста на 1 год (при фиксированной мощности двигателя) цена падает в среднем на 1,650 тыс. усл. ед.

Между мощностью двигателя и ценой автомобиля существует менее тесная положительная связь (коэффициент корреляции 0,665): при увеличении мощности на 1 л. с. (при фиксированном возрасте автомобиля) цена увеличивается в среднем на 0,063 тыс. усл. ед.

С вероятностью 0,95 можно утверждать, что цена автомобиля при возрасте 3 года и мощности двигателя 165 л. с. будет находиться в пределах от 15,15 до 16,51 тыс. усл. ед.

Задача 3

1. Для регрессионной модели

и

С помощью критерия Дарбина-Уотсона проверить наличие или отсутствие автокорреляции на уровне значимости 0,05.

2. Для регрессионной модели

Проверить наличие или отсутствие мультиколлинеарности, используя:

А) парный коэффициент корреляции;

Б) критерий “хи-квадрат” χ2 на уровне значимости 0,05.

Расчетная таблица:

Et

Et-1

Et – et-1

(et – et-1 )2

(et )2

2

-0,85

0,42

-1,27

1,62

0,72

3

0,18

-0,85

1,03

1,05

0,03

4

-0,49

0,18

-0,67

0,45

0,24

5

0,73

-0,49

1,22

1,50

0,54

6

0,03

0,73

-0,70

0,49

0,00

7

0,09

0,03

0,06

0,00

0,01

8

-0,26

0,09

-0,35

0,12

0,07

9

-0,13

-0,26

0,13

0,02

0,02

10

0,40

-0,13

0,52

0,27

0,16

11

-0,02

0,40

-0,41

0,17

0,00

12

-0,03

-0,02

-0,01

0,00

0,00

13

0,60

-0,03

0,63

0,39

0,36

14

0,34

0,60

-0,26

0,07

0,11

15

-0,62

0,34

-0,95

0,91

0,38

16

-0,41

-0,62

0,20

0,04

0,17

Сумма

7,11

2,81

Статистика Дарбина-Уотсона

= 7,11 / 2,81 = 2,53

Табличные значения при n = 16, m = 2

Dl = 0,98; du = 1,54

Так как 4 – du < d < 4 – dl, вопрос о наличии автокорреляции остается открытым (область неопределенности критерия).

Найдем коэффициент парной корреляции между объясняющими переменными.

R12 = = -0,169

Проверим значимость коэффициента корреляции.

= = 0,643 < 1,761

Коэффициент незначим, т. е. мультиколлинеарность не имеет места.

Определитель матрицы коэффициентов парной корреляции:

Det (r) = = 1 – 0,1692 = 0,971

Табличное значение статистики для df = 1 и α = 0,05 равно

χ21;0,05 = 3,84.

Фактическое значение статистики

= – (16 – 1 – (2 * 2 + 5) / 6) ln 0,971 = 0,39 < 3,84

Мультиколлинеарность не имеет места, т. е. линейной зависимости между объясняющими переменными (возрастом автомобиля и мощностью двигателя) не существует. Это свидетельствует о надежности оценок параметров модели.



Зараз ви читаєте: Экономико-математические методы